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Abstract

We prove that the only solutions to the equation σ(n) = 2 · φ(n) with at most
three distinct prime factors are 3, 35 and 1045. Moreover there exist at most a
finite number of solutions to σ(n) = 2 ·φ(n) with Ω(n) ≤ k, and there are at most

22
k+k − k squarefree solutions to φ(n)

∣∣σ(n) if ω(n) = k. Lastly the number of
solutions to φ(n)

∣∣σ(n) as x→∞ is of order O
(
x exp

(
−1

2

√
log x

))
.

1 Introduction

Paul Erdős was interested in common properties of the sum of divisors function σ(n)
and Euler’s totient function φ(n) throughout his career, and (co-)authored many papers
exploring this connection. For example Erdős [1] states that both σ(n) and φ(n), apart
from a set of density zero, are divisible by every prime less than (log log n)1−ε and by
“relatively few” primes larger than (log log n)1+ε.

Aside from being multinomials in the prime power factors of n, and obeying the in-
equality σ(n)/n ≤ n/φ(n), at first glance these functions have very little in common.
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Nevertheless properties of one function are frequently mirrored by the properties of the
other one. As an illustration, their average orders satisfy∑

n≤x

σ(n) �
∑
n≤x

φ(n)

while the normal order of ω
(
σ(n)

)
is exactly equal to the normal order of ω

(
φ(n)

)
,

namely (log log n)2/2. Moreover the same is true [10, 12] for the size of the sets of values

#
{
σ(n) : n ≤ x

}
� #

{
φ(n) : n ≤ x

}
.

Recently there has been much work on ‘joint properties’ shared by these two functions.
For instance there exists an infinite number of squarefree integers n such that σ(n) ·φ(n)
is a square [6]. In a similar vein Ford, Luca, and Pomerance [13] proved that the two
functions have an infinite number of values in common, that is σ(a) = φ(a′) for an
infinite set of integer pairs (a, a′) (see also Ford and Pollack [14, 15]).

Remark 1. (i) In this paper we focus exclusively on properties of the quotient σ(n)
/
φ(n).

Because there are inequalities∑
p|n

log

(
1 +

1

p

)
≤ log

(
σ(n)

φ(n)

)
=
∑
p|n

log

(
p2 − p1−νp(n)

(p− 1)2

)
≤ 2

∑
p|n

log

(
1 +

1

p− 1

)

and the summation over all primes p of log
(

1 + 1
p

)
diverges, it is easy to show that the

values of this quotient are dense inside (0,∞). Furthermore σ(n)/φ(n) � (log log n)2,
so its maximum value grows very slowly with n.

(ii) It is also worthwhile to point out that φ(n) divides σ(n) surprisingly often. We shall
pay special attention to those values of n where this quotient is 2, as well as obtaining
some results for when the quotient is an arbitrary integer.

(iii) Indeed based on computer calculations for values of n up to 1010 (i.e. quite a small
data set), we now strongly suspect that it is possible for the quotient σ(n)/φ(n) to take
on any positive integer value greater than one.

Notations: (a) The function φ(n) is Euler’s totient function, σ(n) the sum of divisors
of n, ω(n) the number of distinct prime divisors of n, Ω(n) the total number of prime
divisors including multiplicity, νp(n) is the maximum power of the prime p which divides
n, supp(n) denotes the set of primes which divide n, and a‖n means a divides n with
the gcd(a, n/a) = 1.

(b) The Landau Vinogradov symbols o,O,�,� each have their standard meaning, with
all implied constants being absolute.
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(c) If a > b are natural numbers satisfying gcd(a, b) = 1, then R = Ra/b denotes the set
of solutions to σ(n)/φ(n) = a/b with the convention that Ra = Ra/1.

Here is a short plan of the article. Using elementary methods, we first establish that the
only solutions to the equation σ(n) = 2 · φ(n) with at most 3 distinct prime factors are
3, 35 and 1045 (Theorem 1). We next use the so-called product compactification of the

natural numbers N̂ to demonstrate that there exist at most a finite number of solutions
to σ(n) = 2 · φ(n) with Ω(n) ≤ k (Theorem 4).

Applying an inequality of Heath-Brown developed for the perfect number problem, in
Theorem 2 we show there are less than 22k+k − k squarefree solutions to φ(n)

∣∣σ(n) if
ω(n) = k. Lastly in Theorem 5, using an upper bound for the number of integers up to x
which have smooth values for φ(n), we show that the number of solutions to φ(n)

∣∣σ(n),
as x→∞, is of order O

(
x exp

(
−1

2

√
log x

))
.

2 Preliminary results

We begin by collecting together some basic inequalities satisfied by all elements of Ra/b.
If n =

∏m
i=1 p

αi
i denotes an arbitrary solution to σ(n) = a · φ(n)/b, then

m∏
i=1

(
1− 1

pαi+1
i

)
=
a

b
·
m∏
i=1

(
1− 1

pi

)2

. (1)

Since the left hand side is less than 1 for n > 1, one obtains the useful bounds√
b

a
>

m∏
i=1

(
1− 1

pi

)
> 1−

m∑
i=1

1

pi
. (2)

Expanding the quadratic on the right of Equation (1) yields in a similar manner

1

2
− b

2a
<

m∑
i=1

1

pi
. (3)

Let us restrict to the case b = 1, so the equation becomes σ(n) = a · φ(n) with a ≥ 2.

Lemma 1. If n ∈ Ra then
log(a)

4
≤
∑
p|n

1

p
≤ a

2
. (4)

3



Proof. One readily deduces

m∏
i=1

(
1− 1

p2i

)
≤

m∏
i=1

(
1− 1

pαi+1
i

)
by Eq(1)

= a ·
m∏
i=1

(
1− 1

pi

)2

in which case
m∏
i=1

(
1 +

1

pi

)
≤ a ·

m∏
i=1

(
1− 1

pi

)
.

It follows directly that

2 ·
m∑
i=1

1

pi
≤ 2 ·

m∑
i=1

1

pi − 1
≤

m∏
i=1

(
1 +

2

pi − 1

)
≤ a.

Therefore one obtains the right-hand inequality predicted in the statement of the lemma.
Now taking logarithms of Equation (1) and rearranging implies

m∑
i=1

log

(
1− 1

pαi+1
i

)
− 2 ·

m∑
i=1

log

(
1− 1

pi

)
= log(a) > 0

and upon noticing that the first sum is negative, we may conclude

m∑
i=1

4

pi
≥

m∑
i=1

2

pi − 1
≥ −2 ·

m∑
i=1

log

(
1− 1

pi

)
≥ log(a).

Remark 2. For prime powers the best bounds we have been able to derive are as follows.
For any odd prime p ≥ 5 and exponent α ≥ 1, there are inequalities

1 +
1

p
≤ σ(pα)

φ(pα)
<

1(
1− 1

p

)2 ≤ 25

16
. (5)

The proof of these is entirely elementary.

The following result shows the quotient σ(n)/φ(n) is strictly monotonically increasing
with respect to the partial ordering associated with division.

Lemma 2. Define the arithmetic function h : N→ Q>0 by the rule h(n) := σ(n)/φ(n).
If a, b ∈ N are such that a is a proper divisor of b, then h(a) < h(b).
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Proof. Let us suppose a =
∏m

i=1 p
αi
i and b =

∏m
i=1 p

βi
i with βi ≥ αi ≥ 0 and βi > 0.

Then adapting Equation (1), one calculates that the ratio h(b)
/
h(a) equals

m∏
i=1, αi=0

 1− 1

p
βi+1
i(

1− 1
pi

)2
 · m∏

i=1, αi>0

(
1− 1

p
βi+1
i

)(
1− 1

pi

)2
(

1− 1
pi

)2 (
1− 1

p
αi+1
i

) =
σ(c)

φ(c)
·

m∏
i=1, αi>0

1− 1

p
βi+1
i

1− 1

p
αi+1
i

where c :=
∏m

i=1, αi=0 p
βi
i . The right-hand side is greater than one unless both c = 1 and

αi = βi at every αi > 0, which corresponds precisely to the situation a = b.

We shall also need an inequality of Heath-Brown and Nielsen [17].

Lemma 3. Let r, a, b ∈ N and x1, . . . , xr be integers with 1 < x1 < · · · < xr. If

r∏
i=1

(
1− 1

xi

)
≤ b

a
<

r−1∏
i=1

(
1− 1

xi

)
then one has the strict inequality b ·

∏r
i=1 xi < (b+ 1)2

r
.

The following well known theorem of Erdős and Wintner [9, Theorem 5.1] will be referred
to in Section 5.

Lemma 4. A real additive function f(n) has a limiting distribution, if and only if the
three series ∑

|f(p)|>1

1

p
,

∑
|f(p)|≤1

f(p)

p
and

∑
|f(p)|≤1

f(p)2

p

are convergent, where in these summations p ranges through all of the prime numbers.
The limiting distribution is continuous if and only if the sum

∑
f(p)6=0 1/p is divergent.

In the same section, we will also require a result of Banks, Friedlander, Pomerance and
Shparlinski [3, Theorem 3.1].

Lemma 5. Let ε > 0 be given. If y is chosen so that (log log x)1+ε ≤ y ≤ x and
u := log x/ log y →∞, then

Φ(x, y) ≤ x exp
(
−
(
1 + o(1)

)
u log log u

)
where Φ(x, y) := #

{
n ≤ x : p | φ(n) implies p ≤ y

}
.
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3 Solutions for low values of ω(n)

Our first result is a prototype structure theorem for elements belonging to the set R2.

Lemma 6. (i) All solutions to σ(n)
/
φ(n) = 2 are odd.

(ii) If n = pα is a prime power solution, then p = 3 and α = 1.

(iii) If n is a solution and 3
∣∣n, then n = 3.

Proof. Suppose σ(n) = 2φ(n) with n = 2e ·
∏

odd p|n p
αp . If n > 1 and e ≥ 1, then

(2e+1 − 1) ·
∏

odd p|n

pαp+1 − 1

p− 1
= 2e ·

∏
odd p|n

(p− 1) · pαp−1.

As a consequence

3

2
≤
(
2− 1

2e
)

=
∏

odd p|n

pαp − pαp−1

pαp + pαp−1 + · · ·+ 1
≤ 1

hence n must be odd, and (i) follows.

Let p denote an odd prime, and assume that n = pα ∈ R2 is a solution with α ≥ 1.
From the equation 2 = σ(pα)/φ(pα) one quickly discovers that pα+1− 1 = 2pα−1(p− 1)2.
The latter implies pα−1 | pα+1 − 1, thus α = 1. However p2 − 1 = 2(p− 1)2 can only be
solved for the prime p = 3, so (ii) is also true.

To dispose of (iii), we shall now assume ω(n) > 1. If 3α‖n then by Equation (1),

1− 1
3α+1

4/9
· F = 2 for some rational F > 1.

In particular 9
4
(1− 1

3α+1 ) < 2, implying 3α+1 < 9 which is false. Therefore n = 3.

Lemma 7. If n ∈ R2 and ω(n) = 2, then n = 35.

Proof. Let n = pα · qβ. First note that the term 1/(1− 1/p) is decreasing as p increases.
Therefore if both p, q ≥ 7 one finds

1.85 ≥ 1

(1− 1
p
)2(1− 1

q
)2
≥

(1− 1
pα+1 )(1− 1

qβ+1 )

(1− 1
p
)2(1− 1

q
)2

= 2

hence by Lemma 6, we can assume 5 = p < q.
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Suppose that p = 5 and q ≥ 11, in which case

(5α+1 − 1)/4

5α−1 · 4
·

1− 1
qβ+1(

1− 1
q

)2 = 2.

Now the second term on the right is decreasing in q, so by Equation (5) is strictly
bounded above by 1/(1− 1/11)2 = 121/100. It follows that 5α+1−1

16·5α−1 · 121100
> 2, whence

5α+1 > 5α+1 − 1 >
200 · 16

121 · 25
· 5α+1 > 1.05 · 5α+1 > 5α+1

and the last statement is clearly false.

The only remaining possibility is p = 5 and q = 7. If α = 1 then

5 + 1

5− 1
· 1− 1/7β+1

62/72
= 2

which means β = 1 (likewise if β = 1, we must have α = 1). However in the equation(
1− 1/5α+1

42/52

)
·
(

1− 1/7β+1

62/72

)
= 2

both factors on the left are strictly increasing in α and β respectively, thus there can be
no solutions with α > 1 or β > 1.

Lemma 8. If n ∈ R2 and ω(n) = 3, then n = 1045.

Proof. Let p, q, r be distinct prime numbers and α, β, γ be natural numbers such that
n = pα · qβ · rγ satisfies σ(n) = 2φ(n). We first show (p, q, r) lies in the set of triples{

(5, 11, 13), (5, 11, 17), (5, 11, 19), (5, 11, 23), (5, 11, 29),

(5, 11, 31), (5, 13, 17), (5, 13, 19), (5, 13, 23)
}
.

Note that if (p, q, r) = (5, 11, 19) then α = β = γ = 1 is certainly a solution.

One may assume p < q < r. By Lemmas 2, 6 and 7 we must have p ≥ 5 and q ≥ 11,
and from Equation (2) with α = 2, β = 1 we find

1√
2
>

(
1− 1

5

)(
1− 1

11

)(
1− 1

r

)
which implies r < 37, thence 13 ≤ r ≤ 31. We checked each prime triple (p, q, r) with
p < q < r such that 5 ≤ p and r ≤ 31 against the inequalities in Equation (2), and
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obtained the nine (potential) solutions to σ(n) = 2φ(n) listed above, and nothing else.
In the case α = β = γ = 1 the only solution was (5, 11, 19).

Let us write the equation σ(n) = 2φ(n) in the form

2 =

 1− 1
pα+1(

1− 1
p

)2
 ·

 1− 1
qβ+1(

1− 1
q

)2
 ·( 1− 1

rγ+1(
1− 1

r

)2
)

and observe that each of the three factors is decreasing in p, q and r respectively, and
increasing in α, β and γ. (By Lemma 2, because (5, 11, 19) is a solution there can be no
other solution for this choice of primes with any one or more of α, β, γ greater than 1.)

Moreover if p, q, r ≥ 7 then p ≥ 7, q ≥ 11 and r ≥ 13; therefore using Equation 2

0.707 >
1√
2
>

(
1− 1

p

)(
1− 1

q

)(
1− 1

r

)
≥
(

1− 1

7

)(
1− 1

11

)(
1− 1

13

)
> 0.719

so we must have p = 5. (Alternatively simply note that in each of the nine solution
classes derived above one always has p = 5.)

We now show how to eliminate each of the eight cases other than (p, q, r) = (5, 11, 19).
To illustrate the method consider (p, q, r) = (5, 11, 13), and suppose that n = pα · qβ · rγ
solves σ(n) = 2φ(n). Using Equation (1) again, one discovers

− log

(
1− 1

5α+1

)
− log

(
1− 1

11β+1

)
− log

(
1− 1

13γ+1

)
= − log

(
2

(
1− 1

5

)2(
1− 1

11

)2(
1− 1

13

)2
)

= 0.103846 =: λ say.

However for 0 < x < 1 we have

x

1− x
> − log(1− x)

in which case

3

5min(α,β,γ)+1 − 1
>

1

5α+1 − 1
+

1

11β+1 − 1
+

1

13γ+1 − 1
> λ.

The latter implies 31 > 5min(α,β,γ)+1, and further that 1 = min(α, β, γ).

We next consider in turn each of the cases α = 1, β = 1 and γ = 1 leaving the other
variables free, thereby eliminating possibilities through a short tree walk. If α = 1 then

1

24
+

1

11β+1 − 1
+

1

13γ+1 − 1
> λ;
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consequently
2

11min(β,γ)+1 − 1
> λ− 1

24

yielding 11min(β,γ)+1 < 34, so α = 1 is clearly impossible. If however β = 1, we obtain

25 ≤ 5min(α,γ)+1 <
2

λ− 1
120

+ 1 < 22,

and if γ = 1 then

25 ≤ 5min(α,β)+1 <
2

λ− 1
168

+ 1 < 22

which is also impossible. Hence there cannot exist solutions with (p, q, r) = (5, 11, 13).

The other remaining seven cases for (p, q, r) are eliminated via similar arguments.

The previous three lemmas may be neatly summarised, as follows.

Theorem 1. If n ∈ R2 has at most 3 distinct prime factors, then n = 3, 35 or 1045.

More generally, if we make some restrictions on the exponents occurring in the prime
decomposition of a solution n ∈ Ra/b (e.g. νp(n) ≤ 1 for all primes p), one can obtain
explicit finiteness results on the number of solutions with a bounded value of ω(n).

Lemma 9. Let k, a, b be fixed natural numbers, and consider the set Ra/b. Then there
are at most a finite number of squarefree n satisfying σ(n) = a · φ(n)

/
b with ω(n) = k.

Proof. We assume k ≥ 2. In Equation (1) one chooses m = k, and for all i take αi = 1
since n is squarefree. Now for n = p1 · · · pk one can rewrite this equation as

b

a
=

k∏
i=1

(
1− 2

pi + 1

)
<

k−1∏
i=1

(
1− 2

pi + 1

)
.

If n is odd then we apply Lemma 3, and immediately conclude

b ·
k∏
i=1

(
pi + 1

2

)
< (b+ 1)2

k

which implies n+ k < 2k · (b+ 1)2
k
/b. If n = 2m is even then σ(m)/φ(m) = a/(3b) and

m is odd, hence

m+ k − 1 ≤
k∏
i=2

(pi + 1) < 2k−1(3b+ 1)2
k−1

/(3b)

in which case n+ 2k − 2 < 2k(3b+ 1)2
k−1
/(3b).
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Setting b = 1, and combining the bounds directly above for n even/odd, we obtain

Theorem 2. If a squarefree integer n satisfies the divisibility φ(n)
∣∣σ(n) with ω(n) = k,

then
n < 22k+k − k.

In particular, there exist at most a finite number of such n.

4 Applications of the product compactification of N

For each prime p, let Np denote the one point compactification of Z≥0; in particular,
each finite point n ∈ Z≥0 is itself an open set, and a basis for the neighborhoods of the

point at infinity, p∞ say, is given by the open sets U
(ε)
p =

{
n ∈ Z≥0 : n ≥ 1/ε

}
∪ {p∞}

with ε > 0. If P indicates the set of prime numbers, let us write

N̂ :=
∏
p∈P

Np

for the product of these indexed spaces, endowed with the standard product topology.
Then N̂ is a compact metrizable space so it is sequentially compact, hence every sequence
in N̂ has a convergent subsequence. Note the useful equivalence that Ni −→ No in N̂
if and only if for all primes p, νp(Ni)→ νp(No) in Np.

If N is a positive integer we write N̂ for the corresponding element of N̂ , namely
(np : p ∈ P) where np = νp(N). For example 8̂4 = (2, 1, 0, 1, . . .) and 1̂ = (0, 0, 0, . . .).

Let N have the discrete topology; we shall identify N with its image in N̂ under the
embedding n → n̂, yielding a dense subset of N̂ . If h : N → R is a multiplicative
function, and if for p ∈ P each sequence

(
h(pn)

)
n∈Z≥0

is Cauchy in neighborhoods U
(ε)
p ,

one may extend h to a function on N̂ through the formula

h
(
N̂
)

:= lim
n̂→(...,νp(N),... )

(∏
p∈P

h
(
pnp
))

providing the limit exists and the product converges, of course.

Remark 3. We shall call N̂ equipped with its topology the product compactification of N.
A nice account detailing some of the properties of this set-up, with the compactification
called the ‘supernatural topology’, is given by Pollack in [21]; it is used, for example, to
explore the perfect number problem. The topology was first introduced by Steinitz [22]
and used in a number of applications, including [2] and [5].
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Lemma 10. Let P ⊂ P be a finite set of primes. Assume we are given a sequence of
natural numbers (Ni) such that Ni → No in N̂, and for all i ∈ N one has supp(Ni) ⊂ P.
Finally let h : N→ R be a positive multiplicative function, such that for each p ∈ P

h(p∞) := lim
n→∞

h(pn)

exists in (0,∞], i.e. is strictly positive or infinity. Defining the disjoint sets

A = {p ∈ P : νp(No) <∞} and B = {p ∈ P : νp(No) =∞}

then inside R>0 ∪ {∞},
lim
i→∞

h(Ni) = h(A) · h(B∞)

where A :=
∏

p∈A p
νp(No) and B :=

∏
p∈B p.

Proof. Firstly note that supp(No) ⊂ P , so the sets of primes A and B are well-defined
and finite. We can write P = A ∪ B as a disjoint union, and then decompose

Ni =
∏
p∈P

pνp(Ni) =
∏
p∈A

pνp(Ni) ·
∏
p∈B

pνp(Ni).

Because Ni → No in N̂, for each prime p we must have νp(Ni)→ νp(No) in Z≥0 ∪ {∞}.
By assumption h is multiplicative on N, in which case

h(Ni) =
∏
p∈P

h
(
pνp(Ni)

)
=
∏
p∈A

h
(
pνp(Ni)

)
·
∏
p∈B

h
(
pνp(Ni)

)
.

Since A is a finite set, then at each p ∈ A and for all i ≥ i1 say, νp(Ni) = νp(No).

It follows that the first term on the right in the above expression is equal to h(A) > 0.
Now for every p ∈ B, νp(Ni)→∞ hence h

(
pνp(Ni)

)
→ h(p∞). Therefore, as the limit of

a product of a finite number of terms is the product of the limits, our hypotheses on h
ensure the indeterminate form 0 · ∞ does not occur. As an immediate consequence the
second term above must tend to h(B∞), and the lemma is proved.

Lemma 11. Let h : N → R be a multiplicative function, and assume (Ni) ⊂ N is a

sequence of natural numbers such that N̂i → N̂o inside N̂, for some positive integer No.
If for all sequences (Mi) ⊂ N such that M̂i → 1̂ in N̂ we also have h(Mi)→ 1 inside R,
then limi→∞ h(Ni) = h(No).

Proof. Given that N̂i → N̂o, one defines P := supp(No) which is a finite set as No ∈
N. Let us write Ni = Ai · Mi where supp(Ai) ⊂ P , and supp(Mi) ∩ P = ∅ so that

gcd(Ai,Mi) = 1. Since M̂i → 1̂ thus h(M̂i)→ 1 and Âi → N̂o, and it therefore follows

h(Ni) = h(Ai) · h(Mi) −→ h(N̂o) · 1 = h(No).
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Theorem 3. Let P be a finite set of primes. Then there exist at most a finite number
of positive integers N ∈ N with supp(N) ⊂ P such that σ(N)

/
φ(N) = 2.

Proof. Let N̂ be endowed with the product topology, and suppose there exists an infinite
sequence of distinct integers (Ni)i≥1 in R2 for which supp(Ni) ⊂ P for each i ∈ N. Then

there is a subsequence, also denoted (Ni), and a limit No ∈ N̂ such that Ni → No.

Let h(n) := σ(n)/φ(n) for n ∈ N and h(p∞) := p2/(p − 1)2, so that h(pn) → h(p∞) for
all p ∈ P. If No was divisible by a prime not in P , then we would have an Ni divisible
by that prime, which is false. Hence No has finite support. By Lemma 10 we can write

No = A ·B∞

where A and B each supported by P are odd, have gcd(A,B) = 1, are such that B is
squarefree, and h(Ni)→ h(A) · h(B∞).

However this means 2 = h(A)·h(B∞). Since A‖No we must have A‖Ni for all sufficiently
large i, and because the Ni are distinct, we must have A = Ni for at most one i. Thus
for i ≥ i1 say we have A a proper unitary divisor of Ni. For such an i, put Ni = A ·Bi so
Bi > 1. Let us write Bi =

∏
p|Bi p

ep,i where ep,i = νp(Bi) tends to νp(B
∞) = +∞ with i.

Indeed by passing to a suitable subsequence, without loss of generality one can assume
each exponent ep,i is monotonically increasing. In particular,

2 = h(Ni) = h(A) · h(Bi) =
σ(A)

φ(A)
·
∏
p|Bi

p2

(p− 1)2
·
(

1− 1

pep,i+1

)
.

The right-hand side is monotonic increasing with i, whilst the left-hand side is constant;
this yields an immediate contradiction, therefore no such infinite sequence (Ni) can have
existed in the first place.

Theorem 4. Let k ≥ 1 be a given natural number. There exist at most a finite number
of positive integers n with Ω(n) ≤ k satisfying σ(n)

/
φ(n) = 2.

Proof. Let h : N → R be defined by h(n) = σ(n)/φ(n). Suppose there exist an infinite
number of distinct positive integers Ni satisfying both the equality 2 = h(Ni) and the
constraint Ω(Ni) ≤ k for all i. By passing to a suitable subsequence, also denoted (Ni),
one can assume Ni → No in N̂.

Remark 4. (i) We must have No supported by at most k primes, otherwise this would
apply to at least one Ni yielding Ω(Ni) ≥ ω(Ni) > k which is false.

(ii) Furthermore, all the components of No in N̂ must be bounded above by k since at
each prime p, one has k ≥ νp(Ni)→ νp(No).

(iii) It follows that this limit point No must correspond to a natural number.
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For i sufficiently large, we can therefore write Ni = No · Bi where Bi is an integer
supported by at most k primes, and gcd(No, Bi) = 1. As there are at most a finite
number of primes dividing No, we can assume for all p ∈ supp(No) that νp(No) = νp(Ni)
for all indices i ≥ io say. Then the support of Bi consists of all primes dividing Ni which
do not divide No.

We claim that there is a sequence of natural numbers (xi)i≥1 tending to infinity, such that
supp(Bi) ⊂ [xi,∞). If not, then there exists a prime q for which νq(Bi) > 0 infinitely
often, which would force νq(No) to be positive even though q 6∈ supp(No)! Therefore our
claim concerning supp(Bi) must be true, in which case

1 ≤ h(Bi) =
∏
p|Bi

1− 1
pνp(Bi)+1(

1− 1
p

)2
 <

∏
p|Bi

(
1− 1

p

)−2
≤
(

1− 1

xi

)−2k
−→ 1.

By Lemma 11 it follows 2 = h(Ni) = h(No) · h(Bi) → h(No), and therefore h(No) = 2.
But the latter is impossible as the Ni being distinct means No is a proper divisor of Ni

for at least one i, thereby implying that h(No) < 2 which gives us a contradiction.

5 Density of the union of the Ra’s

Paul Erdős was very interested in the so-called primitive sequences of natural numbers,
i.e. sequences A = (an)n∈N with a1 < a2 < a3 < · · · such that ai

∣∣aj only when i = j.
For example sequences of distinct numbers with exactly k prime factors are primitive.

For each x > 0 let us define A(x) =
∑

an≤x 1. In 1935, Erdős showed the lower natural
density of A was necessarily zero, namely that

lim inf
x→∞

A(x)

x
= 0.

It follows from Lemma 2 that each sequence of solutions to σ(n) = a · φ(n) yields a
primitive sequence, and therefore the set Ra itself has trivial lower density.

Remark 5. We have a further item of evidence that the density of Ra is zero, via a
theorem of Erdős and Davenport from 1937. If for some sequence (an) one has

lim sup
x→∞

1

log x
·
∑
an≤x

1

an
> 0

then there exists a subsequence (ani) ⊂ (an) such that ani
∣∣ani+1

for all indices i ∈ N.
Hence if the an’s comprise all the elements in Ra ordered by ‘<’ say, then one deduces

lim sup
x→∞

1

log x
·
∑
an≤x

1

an
= 0.
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Thus Ra has lower asymptotic density zero, and also upper logarithmic density zero.
Unfortunately, in general, this alone is not sufficient to imply density zero for the set
(see the much celebrated example of Besicovitch [4]).

However the issue of whether solution sets have density zero can be easily resolved
upon noting that by Lemma 4, f(n) := log (σ(n)/φ(n)) has a continuous increasing
distribution function, hence the same is true for σ(n)/φ(n). Therefore, for any given
positive integers a and b, the set Ra/b has density zero. In fact much more than this is
true in the case b = 1, i.e. when φ(n) | σ(n). The authors are grateful to the referee for
the following proof, based on ideas from [3, Theorem 3.1] (which we labelled Lemma 5).

Theorem 5. If N(x) := #{n ≤ x : φ(n) | σ(n)} then as x→∞, one has the bound

N(x)� x exp

(
−1

2

√
log x

)
.

Proof. Let n ≤ x satisfy φ(n) | σ(n), and write p for the largest prime factor of φ(n).
Assume that p > y where y > 0 is a large parameter to be chosen later, and write A for
the subset of such n with p ≤ y.

Now one has p | φ(n) | σ(n), therefore there exists a prime power qe‖n with p‖σ(qe). If
e = 1 then p | q+1; otherwise as 2qe > σ(qe) ≥ p and n 6= qe, the integer n would have a
proper prime power divisor qe say, with qe > p/2 > y/2. Now using partial summation,
the set of n ≤ x with such a prime power divisor, B say, is of size O(x/

√
y); exploiting

the fact p | φ(n) and a similar argument, we see that either there is a prime r | n with
p | r − 1, or instead n belongs to an exceptional set, C say, of size O(x/y).

Suppose n 6∈ A ∪ B ∪ C. Then n has prime factors r ≡ 1(modp) and q ≡ −1(modp),
and the number of such n ≤ x is bounded above by x/(rq). Summing over both r and q in
the given progressions shows that for a given p, the number of such n is O(x(log x)2/p2);
secondly, summing over primes p > y implies the number of n up to x is O(x(log x)2/y).

Putting everything together, this argument establishes that the total number of n ≤ x
for which φ(n) | σ(n) satisfies the upper bound

N(x)� #
{
n ≤ x : φ(n) has only prime factors ≤ y

}
+

x
√
y

+
x

y
+
x(log x)2

y
.

For x and u sufficiently large, by Lemma 5 one has Φ(x, y) ≤ xe−u/2, and minimizing

xe−
u
2 +

x
√
y

we obtain at the minimum

log y

2
+ log log x− 2 log log y =

log x

2 log y
.
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Neglecting the “loglog” terms yields log y =
√

log x, u =
√

log x and y = exp(
√

log x).
Checking these estimates, one then deduces

Φ(x, y) ≤ x exp(−(1 + o(1))u log log u) ≤ x exp(−u
2

) ≤ x
√
y

so for x sufficiently large, N(x)� x exp
(
− 1

2

√
log x

)
. The result now follows.

For a given m ∈ N, the number of solutions n to ‘m = σ(n) = 2φ(n)’ seems very small.
One might contrast this with the equation m = φ(n), where the number of solutions cm
has been shown to satisfy cm > mδ for infinitely many m, and a range of values of δ
[24, 19].

6 Unsolved problems

(1) If σ(n) = 2φ(n) then it seems likely that d(n) | σ(n), and we have shown numerically
that this is true for all n up to 2.1× 109. The divisibility d(n) | σ(n) follows easily when
n is squarefree, and most solutions to σ(n) = 2φ(n) appear to have this shape.

(2) It seems that the number of solutions to σ(n) = 2φ(n) is infinite. An easier problem
would be to find an infinite set of integers a such that σ(n) = a · φ(n) for at least one n.

(3) No square satisfies σ(n) = a · φ(n) for any a ≥ 2. Along these lines it appears that
perfect powers never satisfy this equation, nor even squarefull numbers.

(4) The number of solutions to σ(n) = 2φ(n) with n ≤ x is expected to be xo(1).
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[21] P. Pollack, Finiteness theorems for perfect numbers and their kin, Amer. Math. Monthly
119 (2012), 670–681.

[22] E. Steinitz, Algebraische theorie der körper, J. Reine Angew. Math. 137 (1910), 167–309.

16



[23] G. Tenenbaum, Introduction to Analytic and Probabilistic Number Theory, Cambridge,
1995.

[24] K. Woolridge, Values taken many times by Euler’s phi-function,Proc. Amer. Math. Soc.
76 (1979), 229–234.

2010 Mathematics Subject Classification: 11A25, 11A41, 54H99, 11N60, 11N25, 11N64.

Keywords: sum of divisors, Euler’s totient function, product compactification.

OEIS related sequences: a062699, a068390, a104901.

17


