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Summary

F The Riemann zeta function ζ(s) is important,

F The behavior of ζ(s) is exceptionally wild,

F The flow ż = f (z) can sometimes be used to better understand
a meromorphic function f (z) and this applies to ζ(s) and ξ(s),

F The symmetrized zeta flow ṡ = ξ(s) has periodic orbits and
periods associated with each critical simple zero,

F The logs of these period obey a linear law,

F The real part of ζ(s) is better behaved on mysterious “Gram
lines”.



Zeta’s definition

♠ For σ > 1 let ζ(s) :=
∑∞

n=1
1
ns .

♠ For σ > 0, ζ(s) =
∑N

n=1
1
ns + N1−s

s−1 − s
∑∞

n=N+1

∫ 1
0

u
(u+n)s+1 du.

♠ For all s 6= 1,

ζ(s) =
Γ(1− s)

2πi

∫

C

zs−1

e−z − 1
dz

where C is the “keyhole” contour which comes in from the right
“below” the x-axis, circles the origin in an anticlockwise direction,
then returns to infinity along the “top” of the x-axis.



Zeta’s importance

♣ The prime number theorem [Korobov, Vinogradov, 1958]

π(x) := #{p ≤ x : p is a rational prime}
= Li(x) + O(x exp(−A log

3
5 x log log−

1
5 x))

♣ If we could show ζ(s) was non-zero in [α, 1)× R for an α with
1
2 < α < 1 then the formula for π(x) would have an error O(xα+ε).



Wild outside the critical strip

By Kronecker’s approximation theorem, if 1 < σ then

ζ(2σ)

ζ(σ)
= inf

t
|ζ(σ + it)| < sup

t
|ζ(σ + it)| = ζ(σ)
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Figure: Plots of ζ(2σ)/ζ(σ) and ζ(σ) for 1 ≤ σ ≤ 2.



Wild outside and inside the critical strip

• In every strip [1, 1 + ε]× R, ζ(s) takes on every complex value
except 0 an infinite number of times.

• Let f (s) be any continuous non-zero function on
B = B( 3

4 ,
1
4 ) ⊂ C. Then for all ε > 0 there is a t so

|ζ(s + it)− f (s)| < ε uniformly on B.

• The curve α(t) = (ζ(σ + it), . . . , ζ(n−1)(σ + it)) is dense in Cn

for any fixed σ with 1
2 < σ ≤ 1.



Polynomial example for ż = f (z)
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Figure: Holomorphic flow for ż = f (z) = (1 + z
3i )(1− z

3i )3.

f ′(−3i) = −8i/3, f ′(3i) = 0, f ′′(3i) = 0, f ′′′(3i) 6= 0.



Flow with 5 centers
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Figure: Flow for f (z) = iz(z4 − 1).



Classification of zeros

If f (zo) = 0 and f ′(zo) = α + iβ 6= 0 then

• f ′(zo) real implies zo is a node,

• f ′(zo) pure imaginary implies zo is a center,

• f ′(zo) has both α, β non-zero then zo is a focus,

• at a simple pole the integral curves of ż = f (z) are those of a
saddle.



Limit cycles

• An orbit or trajectory is a path in C, t → γ(so , t) with
γ̇(t) = f (γ(t)).

• Periodic orbits are trajectories which come back to the initial
point so in a finite period of time.

• A limit cycle is a periodic orbit which has an open neighborhood
containing no other periodic orbit.

Theorem
[B, 2003] Let Ω ⊂ C be simply connected and f : Ω→ C
holomorphic. Then the flow ż = f (z) has no limit cycle in Ω.

Conjecture: simply connected can be replaced by open.



Topology of center basins

An orbit γ is a separatrix if for some z ∈ γ the maximum interval
of existence of the path commencing at z and proceeding in at
least one of positive or negative time is finite.

Theorem
Let ż = f (z) be an entire flow with center at xo . Let P be the set
consisting of xo together with the union of all of the closed orbits
of the flow which contain xo in their interior. Then P is an open
simply connected subset of C and ∂P consists of the at most
countable union of a set of separatrices {γ(xλ, t) : λ ∈ Λ, t ∈ Dλ},
Dλ being the maximum interval of existence of the flow through
xλ, where each γ(xλ, t) has an unbounded graph.



Example of a center basin
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Figure: Flow with two centers.



Structure of a node or focus basin

Theorem
Let ż = f (z) be an entire flow with a simple zero of at zo which is
a node or a focus. Let P be the set of all points in C with orbits
which tend to zo in positive time if it is a sink (or in negative time
if it is a source). Assume, without loss in generality, that zo is a
sink. Then P ∪ {zo} is a simply connected open subset of C and
∂P consists of an at most countable union of closed connected
subsets each being of one of three types: (1) zeros z1 each with an
attached orbit γ1 such that Lα(γ1) = z1 and Lω(γ1) =∞, (2)
zeros z2 each with an attached pair of distinct orbits u, v with
Lα(u) = Lα(v) = z2 and Lω(u) = Lω(v) =∞, and (3) orbits of
the form γλ where each γλ is a positive and negative separatrix.



Example of a focus basin
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Figure: Neighbourhood of a focus.



Phase portrait for ζ(s)
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Figure: Lower section of the strip [−10, 10]× [0, 30].



Near the pole and a real zero
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Figure: Region near the

pole at s = 1.
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Figure: Region about the

sink s = −2.



Near two critical zeros
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Figure: The first critical

zero near s = 0.5 +

14.1347i .
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Figure: The first criti-

cal sink near s = 0.5 +

282.465i .



Phase portrait for ξ(s)

ξ(s) :=
s(s − 1)

2
π−

s
2 Γ(

s

2
)ζ(s) so ξ(s) = ξ(1− s).
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Figure: The phase portrait of ż = ξ(z) in [−20, 20]× [0, 40].



A view out to the right for ξ(s)
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Figure: The phase portrait of ż = ξ(z) in [20, 60]× [0, 40].



Properties of the ṡ = ξ(s) flow

♣ Each simple critical zero is a center,

♣ There are an infinite number of crossing separatrices,

♣ The separatrices all tend to the x-axis in a manner determined
by the gamma factor,

♣ With each simple critical zero there is an associated period,
being the transit time on each of the nested periodic orbits.

♣ The flow is “apparently” a deformation of the flow for
ṡ = cosh(s)



Relationship with the COSH flow

ξ(z +
1

2
) = η(z) =

∫ ∞
1

f (x) cosh(
1

2
z log x)dx

f (x) = 4
d [x3/2ψ′(x)]

dx
x−1/4,

ψ(x) =
∞∑

n=1

e−n2πx .
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Figure: Phase portrait for ż = cosh(z).



Higher up the critical line

Figure: Zeros near t = 121415.



Hypothetical zero configurations

Band number b is the number of separatrices inside a “band”
crossing each x = σ > 1.
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Figure: Hypothetical zero configurations for b = 1, 2, 3.



The linear law for the logs of the ṡ = ξ(s) periods

Let γn be the y-coordinate of a zeta zero. Assume RH and all
zeros are simple.

ρn :=
1

2
+ iγn,

T =

∫

Γ

ds

f (s)
, Γ is a closed path

Tn = ± 2πi

ξ′(ρn)
,

log Tn =
π

4
γn + O(log γn) = RHS ,

Theorem
[BB,2005] log Tn ≥ RHS . Assuming there exists θ ≥ 0 such that
RH and |ζ ′( 1

2 + iγn)|−1 = O(|γn|θ) then log Tn ≤ RHS .



Plot of the linear law for the log periods
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Figure: Plot of logarithm of the period magnitudes against the Riemann

zeros up to γ502 = 814.1.



Plot of the residuals
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Figure: The residuals using a slope of π/4.



The Lambda function

Let Λ(s) := 2(2π)−sΓ(s) cos(πs
2 ) so ζ(1− s) = Λ(s)ζ(s).

♠ The contours =Λ(s) = 0 cut across the critical strip
symmetrically.

♠ They cut the critical line at the points s = 1
2 + iγ where ζ(s) is

real (Gram points) or imaginary, with value Λ(s) = ±1. If Λ(s) = 1
then ζ(s) is real and if ζ(s) is a simple zero it is a center. If
Λ(s) = −1 then ζ(s) is imaginary and if ζ(s) is a simple zero it is a
node.

♠ If =(s) 6= 0 then Λ(s) 6= 0.



Flow for ṡ = Λ(s)
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Figure: Phase portrait for ṡ = Λ(s) with −1 ≤ σ ≤ 2 and 200 ≤ t ≤ 205.



Equations of the Gram lines

Lemma 1 The contours of =Λ(s) = 0, for 0 ≤ σ ≤ 1, differ from
intervals parallel to the x-axis through those points by O(1/t).
Indeed, the contours satisfy the equations, for n ∈ Z,

t

2
log

t

2π
− t

2
− π

8
+

1

48t
− (σ − 1

2 )2

4t
+ O(

1

t3
) =

nπ

2
(1),

where n is even for lines through Gram points and n is odd for lines
through the points where ζ(s) is imaginary.



Extension to the theorem of Titchmarsh

♣ The theorem of Titchmarch [1934]:

lim
N→∞

1

N

∑

1≤n≤N

[<ζ(
1

2
+ ign)− 2] = 0.

♣ [BB,2007] If 1
2 ≤ σ < 1, then

lim
N→∞

1

N

∑

1≤n≤N

[<ζ(σ + ign)− 1− (
gn

2π
)

1
2
−σ] = 0.

♣ For all σ with 0 < σ < 1 and ε with 0 < ε < 1 the inequality

∑

1≤n≤N

<ζ(σ + ign) ≥ (1− ε)N

holds for all N sufficiently large.
♣ For each σ with 0 < σ < 1 there exist an infinite number of
positive integers n with <ζ(σ + ign) > 0.



Motivation: Backlund’s method

Let N(T ) be the number of zeros of ζ(s), including multiplicities,
in the range 0 < =s < T and C is the line from 1

2 + iT to infinity
parallel to the x-axis then

N(T ) =
ϑ(T )

π
+ 1 +

1

π
=
∫

C

ζ ′(s)

ζ(s)
ds

If it can be shown that <ζ is positive on C then ζ(C ) never leave
the right half plane so the integral term has absolute value less
than 1

2 . Hence N(T ) is the integer nearest to ϑ(T )
π + 1.


