The Riemann zeta function and holomorphic flows

Kevin A. Broughan

University of Waikato, Hamilton, NZ kab@waikato.ac.nz

April 7, 2009

Summary

\star The Riemann zeta function $\zeta(s)$ is important,
\star The behavior of $\zeta(s)$ is exceptionally wild,
\star The flow $\dot{z}=f(z)$ can sometimes be used to better understand a meromorphic function $f(z)$ and this applies to $\zeta(s)$ and $\xi(s)$,
\star The symmetrized zeta flow $\dot{s}=\xi(s)$ has periodic orbits and periods associated with each critical simple zero,
\star The logs of these period obey a linear law,
\star The real part of $\zeta(s)$ is better behaved on mysterious "Gram lines".

Zeta's definition

© For $\sigma>1$ let $\zeta(s):=\sum_{n=1}^{\infty} \frac{1}{n^{s}}$.
© For $\sigma>0, \zeta(s)=\sum_{n=1}^{N} \frac{1}{n^{s}}+\frac{N^{1-s}}{s-1}-s \sum_{n=N+1}^{\infty} \int_{0}^{1} \frac{u}{(u+n)^{s+1}} d u$.
© For all $s \neq 1$,

$$
\zeta(s)=\frac{\Gamma(1-s)}{2 \pi i} \int_{C} \frac{z^{s-1}}{e^{-z}-1} d z
$$

where C is the "keyhole" contour which comes in from the right "below" the x-axis, circles the origin in an anticlockwise direction, then returns to infinity along the "top" of the x-axis.

Zeta's importance

\& The prime number theorem [Korobov, Vinogradov, 1958]

$$
\begin{aligned}
\pi(x) & :=\#\{p \leq x: p \text { is a rational prime }\} \\
& =\mathrm{Li}(\mathrm{x})+\mathrm{O}\left(\times \exp \left(-\mathrm{A} \log ^{\frac{3}{5}} \times \log \log ^{-\frac{1}{5}} \mathrm{x}\right)\right)
\end{aligned}
$$

\& If we could show $\zeta(s)$ was non-zero in $[\alpha, 1) \times \mathbb{R}$ for an α with $\frac{1}{2}<\alpha<1$ then the formula for $\pi(x)$ would have an error $O\left(x^{\alpha+\epsilon}\right)$.

Wild outside the critical strip

By Kronecker's approximation theorem, if $1<\sigma$ then

$$
\frac{\zeta(2 \sigma)}{\zeta(\sigma)}=\inf _{t}|\zeta(\sigma+i t)|<\sup _{t}|\zeta(\sigma+i t)|=\zeta(\sigma)
$$

Figure: Plots of $\zeta(2 \sigma) / \zeta(\sigma)$ and $\zeta(\sigma)$ for $1 \leq \sigma \leq 2$.

Wild outside and inside the critical strip

- In every strip $[1,1+\epsilon] \times \mathbb{R}, \zeta(s)$ takes on every complex value except 0 an infinite number of times.
- Let $f(s)$ be any continuous non-zero function on $B=B\left(\frac{3}{4}, \frac{1}{4}\right) \subset \mathbb{C}$. Then for all $\epsilon>0$ there is a t so $|\zeta(s+i t)-f(s)|<\epsilon$ uniformly on B.
- The curve $\alpha(t)=\left(\zeta(\sigma+i t), \ldots, \zeta^{(n-1)}(\sigma+i t)\right)$ is dense in \mathbb{C}^{n} for any fixed σ with $\frac{1}{2}<\sigma \leq 1$.

Polynomial example for $\dot{z}=f(z)$

Figure: Holomorphic flow for $\dot{z}=f(z)=\left(1+\frac{z}{3 i}\right)\left(1-\frac{z}{3 i}\right)^{3}$.

$$
f^{\prime}(-3 i)=-8 i / 3, f^{\prime}(3 i)=0, f^{\prime \prime}(3 i)=0, f^{\prime \prime \prime}(3 i) \neq 0
$$

Flow with 5 centers

Figure: Flow for $f(z)=i z\left(z^{4}-1\right)$.

Classification of zeros

If $f\left(z_{o}\right)=0$ and $f^{\prime}\left(z_{o}\right)=\alpha+i \beta \neq 0$ then

- $f^{\prime}\left(z_{o}\right)$ real implies z_{o} is a node,
- $f^{\prime}\left(z_{o}\right)$ pure imaginary implies z_{o} is a center,
- $f^{\prime}\left(z_{0}\right)$ has both α, β non-zero then z_{o} is a focus,
- at a simple pole the integral curves of $\dot{z}=f(z)$ are those of a saddle.

Limit cycles

- An orbit or trajectory is a path in $\mathbb{C}, t \rightarrow \gamma\left(s_{o}, t\right)$ with $\dot{\gamma}(t)=f(\gamma(t))$.
- Periodic orbits are trajectories which come back to the initial point s_{o} in a finite period of time.
- A limit cycle is a periodic orbit which has an open neighborhood containing no other periodic orbit.

Theorem
$[B, 2003]$ Let $\Omega \subset \mathbb{C}$ be simply connected and $f: \Omega \rightarrow \mathbb{C}$ holomorphic. Then the flow $\dot{z}=f(z)$ has no limit cycle in Ω.

Conjecture: simply connected can be replaced by open.

Topology of center basins

An orbit γ is a separatrix if for some $z \in \gamma$ the maximum interval of existence of the path commencing at z and proceeding in at least one of positive or negative time is finite.

Theorem

Let $\dot{z}=f(z)$ be an entire flow with center at x_{o}. Let P be the set consisting of x_{0} together with the union of all of the closed orbits of the flow which contain x_{0} in their interior. Then P is an open simply connected subset of \mathbb{C} and ∂P consists of the at most countable union of a set of separatrices $\left\{\gamma\left(x_{\lambda}, t\right): \lambda \in \Lambda, t \in D_{\lambda}\right\}$, D_{λ} being the maximum interval of existence of the flow through x_{λ}, where each $\gamma\left(x_{\lambda}, t\right)$ has an unbounded graph.

Example of a center basin

Figure: Flow with two centers.

Structure of a node or focus basin

Theorem

Let $\dot{z}=f(z)$ be an entire flow with a simple zero of at z_{0} which is a node or a focus. Let P be the set of all points in \mathbb{C} with orbits which tend to z_{0} in positive time if it is a sink (or in negative time if it is a source). Assume, without loss in generality, that z_{0} is a sink. Then $P \cup\left\{z_{o}\right\}$ is a simply connected open subset of \mathbb{C} and ∂P consists of an at most countable union of closed connected subsets each being of one of three types: (1) zeros z_{1} each with an attached orbit γ_{1} such that $L_{\alpha}\left(\gamma_{1}\right)=z_{1}$ and $L_{\omega}\left(\gamma_{1}\right)=\infty$, (2) zeros z_{2} each with an attached pair of distinct orbits u, v with $L_{\alpha}(u)=L_{\alpha}(v)=z_{2}$ and $L_{\omega}(u)=L_{\omega}(v)=\infty$, and (3) orbits of the form γ_{λ} where each γ_{λ} is a positive and negative separatrix.

Example of a focus basin

Figure: Neighbourhood of a focus.

Phase portrait for $\zeta(s)$

Figure: Lower section of the strip $[-10,10] \times[0,30]$.

Near the pole and a real zero

Figure: Region near the pole at $s=1$.

Figure: Region about the sink $s=-2$.

Figure: The first critical zero near $s=0.5+$ 14.1347i.

Figure: The first critical sink near $s=0.5+$ 282.465i.

Phase portrait for $\xi(s)$

$$
\xi(s):=\frac{s(s-1)}{2} \pi^{-\frac{s}{2}} \Gamma\left(\frac{s}{2}\right) \zeta(s) \text { so } \xi(s)=\xi(1-s) .
$$

Figure: The phase portrait of $\dot{z}=\xi(z)$ in $[-20,20] \times[0,40]$.

A view out to the right for $\xi(s)$

Figure: The phase portrait of $\dot{z}=\xi(z)$ in $[20,60] \times[0,40]$.

Properties of the $\dot{s}=\xi(s)$ flow

\& Each simple critical zero is a center,
\& There are an infinite number of crossing separatrices,
\& The separatrices all tend to the x-axis in a manner determined by the gamma factor,
\& With each simple critical zero there is an associated period, being the transit time on each of the nested periodic orbits.
\& The flow is "apparently" a deformation of the flow for $\dot{s}=\cosh (s)$

Relationship with the COSH flow

$$
\begin{aligned}
\xi\left(z+\frac{1}{2}\right) & =\eta(z)=\int_{1}^{\infty} f(x) \cosh \left(\frac{1}{2} z \log x\right) d x \\
f(x) & =4 \frac{d\left[x^{3 / 2} \psi^{\prime}(x)\right]}{d x} x^{-1 / 4} \\
\psi(x) & =\sum_{n=1}^{\infty} e^{-n^{2} \pi x} \\
&
\end{aligned}
$$

Figure: Phase portrait for $\dot{z}=\cosh (z)$.

Higher up the critical line

Figure: Zeros near $t=121415$.

Hypothetical zero configurations

Band number b is the number of separatrices inside a "band" crossing each $x=\sigma>1$.

Figure: Hypothetical zero configurations for $b=1,2,3$.

The linear law for the logs of the $\dot{s}=\xi(s)$ periods

Let γ_{n} be the y-coordinate of a zeta zero. Assume RH and all zeros are simple.

$$
\begin{aligned}
\rho_{n} & :=\frac{1}{2}+i \gamma_{n}, \\
T & =\int_{\Gamma} \frac{d s}{f(s)}, \Gamma \text { is a closed path } \\
T_{n} & = \pm \frac{2 \pi i}{\xi^{\prime}\left(\rho_{n}\right)}, \\
\log T_{n} & =\frac{\pi}{4} \gamma_{n}+O\left(\log \gamma_{n}\right)=R H S,
\end{aligned}
$$

Theorem
[BB,2005] $\log T_{n} \geq R H S$. Assuming there exists $\theta \geq 0$ such that RH and $\left|\zeta^{\prime}\left(\frac{1}{2}+i \gamma_{n}\right)\right|^{-1}=O\left(\left|\gamma_{n}\right|^{\theta}\right)$ then $\log T_{n} \leq R H S$.

Plot of the linear law for the log periods

Figure: Plot of logarithm of the period magnitudes against the Riemann zeros up to $\gamma_{502}=814.1$.

Figure: The residuals using a slope of $\pi / 4$.

Let $\Lambda(s):=2(2 \pi)^{-s} \Gamma(s) \cos \left(\frac{\pi s}{2}\right)$ so $\zeta(1-s)=\Lambda(s) \zeta(s)$.
A The contours $\Im \wedge(s)=0$ cut across the critical strip symmetrically.
© They cut the critical line at the points $s=\frac{1}{2}+i \gamma$ where $\zeta(s)$ is real (Gram points) or imaginary, with value $\Lambda(s)= \pm 1$. If $\Lambda(s)=1$ then $\zeta(s)$ is real and if $\zeta(s)$ is a simple zero it is a center. If $\Lambda(s)=-1$ then $\zeta(s)$ is imaginary and if $\zeta(s)$ is a simple zero it is a node.

A If $\Im(s) \neq 0$ then $\Lambda(s) \neq 0$.

Flow for $\dot{s}=\Lambda(s)$

Figure: Phase portrait for $\dot{s}=\Lambda(s)$ with $-1 \leq \sigma \leq 2$ and $200 \leq t \leq 205$.

Equations of the Gram lines

Lemma 1 The contours of $\Im \wedge(s)=0$, for $0 \leq \sigma \leq 1$, differ from intervals parallel to the x-axis through those points by $O(1 / t)$. Indeed, the contours satisfy the equations, for $n \in \mathbb{Z}$,

$$
\begin{equation*}
\frac{t}{2} \log \frac{t}{2 \pi}-\frac{t}{2}-\frac{\pi}{8}+\frac{1}{48 t}-\frac{\left(\sigma-\frac{1}{2}\right)^{2}}{4 t}+O\left(\frac{1}{t^{3}}\right)=\frac{n \pi}{2} \tag{1}
\end{equation*}
$$

where n is even for lines through Gram points and n is odd for lines through the points where $\zeta(s)$ is imaginary.

Extension to the theorem of Titchmarsh

\& The theorem of Titchmarch [1934]:

$$
\lim _{N \rightarrow \infty} \frac{1}{N} \sum_{1 \leq n \leq N}\left[\Re \zeta\left(\frac{1}{2}+i g_{n}\right)-2\right]=0 .
$$

\& $[\mathrm{BB}, 2007]$ If $\frac{1}{2} \leq \sigma<1$, then

$$
\lim _{N \rightarrow \infty} \frac{1}{N} \sum_{1 \leq n \leq N}\left[\Re \zeta\left(\sigma+i g_{n}\right)-1-\left(\frac{g_{n}}{2 \pi}\right)^{\frac{1}{2}-\sigma}\right]=0 .
$$

\% For all σ with $0<\sigma<1$ and ϵ with $0<\epsilon<1$ the inequality

$$
\sum_{1 \leq n \leq N} \Re \zeta\left(\sigma+i g_{n}\right) \geq(1-\epsilon) N
$$

holds for all N sufficiently large.
\& For each σ with $0<\sigma<1$ there exist an infinite number of positive integers n with $\Re \zeta\left(\sigma+i g_{n}\right)>0$.

Motivation: Backlund's method

Let $N(T)$ be the number of zeros of $\zeta(s)$, including multiplicities, in the range $0<\Im s<T$ and C is the line from $\frac{1}{2}+i T$ to infinity parallel to the x-axis then

$$
N(T)=\frac{\vartheta(T)}{\pi}+1+\frac{1}{\pi} \Im \int_{C} \frac{\zeta^{\prime}(s)}{\zeta(s)} d s
$$

If it can be shown that $\Re \zeta$ is positive on C then $\zeta(C)$ never leave the right half plane so the integral term has absolute value less than $\frac{1}{2}$. Hence $N(T)$ is the integer nearest to $\frac{\vartheta(T)}{\pi}+1$.

