The Riemann zeta function and holomorphic flows

Kevin A. Broughan

University of Waikato, Hamilton, NZ kab@waikato.ac.nz

April 7, 2009

Summary

- ★ The Riemann zeta function $\zeta(s)$ is important,
- ★ The behavior of $\zeta(s)$ is exceptionally wild,

★ The flow $\dot{z} = f(z)$ can sometimes be used to better understand a meromorphic function f(z) and this applies to $\zeta(s)$ and $\xi(s)$,

★ The symmetrized zeta flow $\dot{s} = \xi(s)$ has periodic orbits and periods associated with each critical simple zero,

★ The logs of these period obey a linear law,

★ The real part of $\zeta(s)$ is better behaved on mysterious "Gram lines".

Zeta's definition

• For
$$\sigma > 1$$
 let $\zeta(s) := \sum_{n=1}^{\infty} \frac{1}{n^s}$.
• For $\sigma > 0$, $\zeta(s) = \sum_{n=1}^{N} \frac{1}{n^s} + \frac{N^{1-s}}{s-1} - s \sum_{n=N+1}^{\infty} \int_0^1 \frac{u}{(u+n)^{s+1}} du$.
• For all $s \neq 1$,

$$\zeta(s) = \frac{\Gamma(1-s)}{2\pi i} \int_C \frac{z^{s-1}}{e^{-z}-1} dz$$

where C is the "keyhole" contour which comes in from the right "below" the x-axis, circles the origin in an anticlockwise direction, then returns to infinity along the "top" of the x-axis.

Zeta's importance

The prime number theorem [Korobov, Vinogradov, 1958]

$$\begin{aligned} \pi(x) &:= & \#\{p \le x : p \text{ is a rational prime}\} \\ &= & \mathsf{Li}(x) + \mathsf{O}(x \exp(-\mathsf{A} \log^{\frac{3}{5}} x \log \log^{-\frac{1}{5}} x)) \end{aligned}$$

♣ If we could show $\zeta(s)$ was non-zero in $[\alpha, 1) \times \mathbb{R}$ for an α with $\frac{1}{2} < \alpha < 1$ then the formula for $\pi(x)$ would have an error $O(x^{\alpha+\epsilon})$.

Wild outside the critical strip

By Kronecker's approximation theorem, if $1 < \sigma$ then

Figure: Plots of $\zeta(2\sigma)/\zeta(\sigma)$ and $\zeta(\sigma)$ for $1 \le \sigma \le 2$.

Wild outside and inside the critical strip

• In every strip $[1, 1 + \epsilon] \times \mathbb{R}$, $\zeta(s)$ takes on every complex value except 0 an infinite number of times.

• Let f(s) be any continuous non-zero function on $B = B(\frac{3}{4}, \frac{1}{4}) \subset \mathbb{C}$. Then for all $\epsilon > 0$ there is a t so $|\zeta(s + it) - f(s)| < \epsilon$ uniformly on B.

• The curve $\alpha(t) = (\zeta(\sigma + it), \dots, \zeta^{(n-1)}(\sigma + it))$ is dense in \mathbb{C}^n for any fixed σ with $\frac{1}{2} < \sigma \leq 1$.

Polynomial example for $\dot{z} = f(z)$

Figure: Holomorphic flow for $\dot{z} = f(z) = (1 + \frac{z}{3i})(1 - \frac{z}{3i})^3$.

$$f'(-3i) = -8i/3, \ f'(3i) = 0, \ f''(3i) = 0, \ f'''(3i) \neq 0.$$

Flow with 5 centers

Figure: Flow for $f(z) = iz(z^4 - 1)$.

Classification of zeros

If
$$f(z_o) = 0$$
 and $f'(z_o) = \alpha + i\beta \neq 0$ then

- $f'(z_o)$ real implies z_o is a node,
- $f'(z_o)$ pure imaginary implies z_o is a center,
- $f'(z_o)$ has both α , β non-zero then z_o is a focus,
- at a simple pole the integral curves of $\dot{z} = f(z)$ are those of a saddle.

Limit cycles

• An orbit or trajectory is a path in \mathbb{C} , $t \to \gamma(s_o, t)$ with $\dot{\gamma}(t) = f(\gamma(t))$.

• **Periodic orbits** are trajectories which come back to the initial point *s*_o in a finite period of time.

• A **limit cycle** is a periodic orbit which has an open neighborhood containing no other periodic orbit.

Theorem [B, 2003] Let $\Omega \subset \mathbb{C}$ be simply connected and $f : \Omega \to \mathbb{C}$ holomorphic. Then the flow $\dot{z} = f(z)$ has no limit cycle in Ω .

Conjecture: *simply connected* can be replaced by *open*.

Topology of center basins

An orbit γ is a **separatrix** if for some $z \in \gamma$ the maximum interval of existence of the path commencing at z and proceeding in at least one of positive or negative time is finite.

Theorem

Let $\dot{z} = f(z)$ be an entire flow with center at x_o . Let P be the set consisting of x_o together with the union of all of the closed orbits of the flow which contain x_o in their interior. Then P is an open simply connected subset of \mathbb{C} and ∂P consists of the at most countable union of a set of separatrices $\{\gamma(x_\lambda, t) : \lambda \in \Lambda, t \in D_\lambda\}$, D_λ being the maximum interval of existence of the flow through x_λ , where each $\gamma(x_\lambda, t)$ has an unbounded graph.

Example of a center basin

Figure: Flow with two centers.

Structure of a node or focus basin

Theorem

Let $\dot{z} = f(z)$ be an entire flow with a simple zero of at z_0 which is a node or a focus. Let P be the set of all points in \mathbb{C} with orbits which tend to z_o in positive time if it is a sink (or in negative time if it is a source). Assume, without loss in generality, that z_o is a sink. Then $P \cup \{z_o\}$ is a simply connected open subset of \mathbb{C} and ∂P consists of an at most countable union of closed connected subsets each being of one of three types: (1) zeros z_1 each with an attached orbit γ_1 such that $L_{\alpha}(\gamma_1) = z_1$ and $L_{\omega}(\gamma_1) = \infty$, (2) zeros z_2 each with an attached pair of distinct orbits u, v with $L_{\alpha}(u) = L_{\alpha}(v) = z_2$ and $L_{\omega}(u) = L_{\omega}(v) = \infty$, and (3) orbits of the form γ_{λ} where each γ_{λ} is a positive and negative separatrix.

Example of a focus basin

Figure: Neighbourhood of a focus.

Phase portrait for $\zeta(s)$

Figure: Lower section of the strip $[-10, 10] \times [0, 30]$.

Near the pole and a real zero

Figure: Region near the pole at s = 1.

Figure: Region about the sink s = -2.

Near two critical zeros

Figure: The first critical Figure: The first critizero near s = 0.5 + cal sink near s = 0.5 + cal sink14.1347*i*.

282.465*i*.

Phase portrait for $\xi(s)$

$$\xi(s) := rac{s(s-1)}{2} \pi^{-rac{s}{2}} \Gamma(rac{s}{2}) \zeta(s) ext{ so } \xi(s) = \xi(1-s).$$

Figure: The phase portrait of $\dot{z} = \xi(z)$ in $[-20, 20] \times [0, 40]$.

A view out to the right for $\xi(s)$

Figure: The phase portrait of $\dot{z} = \xi(z)$ in $[20, 60] \times [0, 40]$.

Properties of the $\dot{s} = \xi(s)$ flow

& Each simple critical zero is a center,

There are an infinite number of crossing separatrices,

The separatrices all tend to the x-axis in a manner determined by the gamma factor,

♣ With each simple critical zero there is an associated period, being the transit time on each of the nested periodic orbits.

\$ The flow is "apparently" a deformation of the flow for $\dot{s} = \cosh(s)$

Relationship with the COSH flow

$$\xi(z + \frac{1}{2}) = \eta(z) = \int_{1}^{\infty} f(x) \cosh(\frac{1}{2}z \log x) dx$$

$$f(x) = 4 \frac{d[x^{3/2}\psi'(x)]}{dx} x^{-1/4},$$

$$\psi(x) = \sum_{n=1}^{\infty} e^{-n^{2}\pi x}.$$

Figure: Phase portrait for $\dot{z} = \cosh(z)$.

Higher up the critical line

Figure: Zeros near t = 121415.

Hypothetical zero configurations

Band number *b* is the number of separatrices inside a "band" crossing each $x = \sigma > 1$.

Figure: Hypothetical zero configurations for b = 1, 2, 3.

The linear law for the logs of the $\dot{s} = \xi(s)$ periods

Let γ_n be the y-coordinate of a zeta zero. Assume RH and all zeros are simple.

$$\rho_n := \frac{1}{2} + i\gamma_n,$$

$$T = \int_{\Gamma} \frac{ds}{f(s)}, \ \Gamma \text{ is a closed path}$$

$$T_n = \pm \frac{2\pi i}{\xi'(\rho_n)},$$

$$\log T_n = \frac{\pi}{4}\gamma_n + O(\log \gamma_n) = RHS,$$

Theorem

[BB,2005] log $T_n \ge RHS$. Assuming there exists $\theta \ge 0$ such that RH and $|\zeta'(\frac{1}{2} + i\gamma_n)|^{-1} = O(|\gamma_n|^{\theta})$ then log $T_n \le RHS$.

Plot of the linear law for the log periods

Figure: Plot of logarithm of the period magnitudes against the Riemann zeros up to $\gamma_{502} = 814.1$.

Plot of the residuals

Figure: The residuals using a slope of $\pi/4$.

The Lambda function

Let
$$\Lambda(s) := 2(2\pi)^{-s}\Gamma(s)\cos(\frac{\pi s}{2})$$
 so $\zeta(1-s) = \Lambda(s)\zeta(s)$.

• The contours $\Im \Lambda(s) = 0$ cut across the critical strip symmetrically.

♠ They cut the critical line at the points $s = \frac{1}{2} + i\gamma$ where $\zeta(s)$ is real (Gram points) or imaginary, with value $\Lambda(s) = \pm 1$. If $\Lambda(s) = 1$ then $\zeta(s)$ is real and if $\zeta(s)$ is a simple zero it is a center. If $\Lambda(s) = -1$ then $\zeta(s)$ is imaginary and if $\zeta(s)$ is a simple zero it is a node.

• If $\Im(s) \neq 0$ then $\Lambda(s) \neq 0$.

Flow for $\dot{s} = \Lambda(s)$

Figure: Phase portrait for $\dot{s} = \Lambda(s)$ with $-1 \le \sigma \le 2$ and $200 \le t \le 205$.

Equations of the Gram lines

Lemma 1 The contours of $\Im \Lambda(s) = 0$, for $0 \le \sigma \le 1$, differ from intervals parallel to the x-axis through those points by O(1/t). Indeed, the contours satisfy the equations, for $n \in \mathbb{Z}$,

$$\frac{t}{2}\log\frac{t}{2\pi} - \frac{t}{2} - \frac{\pi}{8} + \frac{1}{48t} - \frac{(\sigma - \frac{1}{2})^2}{4t} + O(\frac{1}{t^3}) = \frac{n\pi}{2} \qquad (1),$$

where n is even for lines through Gram points and n is odd for lines through the points where $\zeta(s)$ is imaginary.

Extension to the theorem of Titchmarsh

♣ The theorem of Titchmarch [1934]:

$$\lim_{N\to\infty}\frac{1}{N}\sum_{1\leq n\leq N}[\Re\zeta(\frac{1}{2}+ig_n)-2]=0.$$

4 [BB,2007] If $\frac{1}{2} \leq \sigma < 1$, then

$$\lim_{N\to\infty}\frac{1}{N}\sum_{1\leq n\leq N}[\Re\zeta(\sigma+ig_n)-1-(\frac{g_n}{2\pi})^{\frac{1}{2}-\sigma}]=0.$$

♣ For all σ with $0 < \sigma < 1$ and ϵ with $0 < \epsilon < 1$ the inequality

$$\sum_{1 \le n \le N} \Re \zeta(\sigma + ig_n) \ge (1 - \epsilon)N$$

holds for all N sufficiently large.

♣ For each σ with $0 < \sigma < 1$ there exist an infinite number of positive integers *n* with $\Re \zeta(\sigma + ig_n) > 0$.

Motivation: Backlund's method

Let N(T) be the number of zeros of $\zeta(s)$, including multiplicities, in the range $0 < \Im s < T$ and C is the line from $\frac{1}{2} + iT$ to infinity parallel to the x-axis then

$$N(T) = \frac{\vartheta(T)}{\pi} + 1 + \frac{1}{\pi}\Im \int_C \frac{\zeta'(s)}{\zeta(s)} ds$$

If it can be shown that $\Re \zeta$ is positive on *C* then $\zeta(C)$ never leave the right half plane so the integral term has absolute value less than $\frac{1}{2}$. Hence N(T) is the integer nearest to $\frac{\vartheta(T)}{\pi} + 1$.