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Summary

% The Riemann zeta function ((s) is important,
% The behavior of ((s) is exceptionally wild,

% The flow z = f(z) can sometimes be used to better understand
a meromorphic function f(z) and this applies to ((s) and &(s),

% The symmetrized zeta flow § = £(s) has periodic orbits and
periods associated with each critical simple zero,

% The logs of these period obey a linear law,

% The real part of ((s) is better behaved on mysterious “Gram
lines".



Zeta's definition
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where C is the “keyhole” contour which comes in from the right
“below” the x-axis, circles the origin in an anticlockwise direction,
then returns to infinity along the “top” of the x-axis.



Zeta's importance

& The prime number theorem [Korobov, Vinogradov, 1958]

m(x) =

#{p < x: pis a rational prime}
Li(x) + O(xexp(—A Iog% x log Iog_% X))

& If we could show ((s) was non-zero in [, 1) x R for an « with
3 < a < 1 then the formula for m(x) would have an error O(x**).



Wild outside the critical strip

By Kronecker's approximation theorem, if 1 < o then
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Figure: Plots of {(20)/{(c) and {(¢) for 1 < o < 2.



Wild outside and inside the critical strip

e In every strip [1,1 + €] X R, ((s) takes on every complex value
except 0 an infinite number of times.

e Let f(s) be any continuous non-zero function on
B =B(3,%) CC. Then for all € > 0 there is a t so
|¢(s + it) — f(s)| < € uniformly on B.

e The curve a(t) = (¢(o +it),...,C""D(o + it)) is dense in C"
for any fixed o with % <o<1.



Polynomial example for z = f(z)
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Figure: Holomorphic flow for z = f(z) = (1+ £)(1 — £)°.

F1(=3i) = —8i/3, f'(3i) =0, f"(3i) = 0, f"(3i) # 0.



Flow with 5 centers




Classification of zeros

If f(zo) =0 and f'(z,) = a+ i3 # 0 then

e f'(z,) real implies z, is a node,

e f'(z,) pure imaginary implies z, is a center,

e f'(z,) has both «, 3 non-zero then z, is a focus,

e at a simple pole the integral curves of z = f(z) are those of a
saddle.



Limit cycles

e An orbit or trajectory is a path in C, t — 7(s,, t) with

Y(t) = f(x(1)).

e Periodic orbits are trajectories which come back to the initial
point s, in a finite period of time.

e A limit cycle is a periodic orbit which has an open neighborhood
containing no other periodic orbit.

Theorem
[B, 2003] Let  C C be simply connected and f : Q — C
holomorphic. Then the flow z = f(z) has no limit cycle in Q.

Conjecture: simply connected can be replaced by open.



Topology of center basins

An orbit v is a separatrix if for some z €  the maximum interval
of existence of the path commencing at z and proceeding in at
least one of positive or negative time is finite.

Theorem

Let Z = f(z) be an entire flow with center at x,. Let P be the set
consisting of x, together with the union of all of the closed orbits
of the flow which contain x, in their interior. Then P is an open
simply connected subset of C and P consists of the at most
countable union of a set of separatrices {y(xy,t) : A € At € Dy},
D) being the maximum interval of existence of the flow through
Xy, where each v(xy, t) has an unbounded graph.



Example of a center basin
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Figure: Flow with two centers.




Structure of a node or focus basin

Theorem

Let z = f(z) be an entire flow with a simple zero of at z, which is
a node or a focus. Let P be the set of all points in C with orbits
which tend to z, in positive time if it is a sink (or in negative time
if it is a source). Assume, without loss in generality, that z, is a
sink. Then P U {z,} is a simply connected open subset of C and
OP consists of an at most countable union of closed connected
subsets each being of one of three types: (1) zeros z; each with an
attached orbit v1 such that L,(71) = z1 and L, (1) = o0, (2)
zeros zp each with an attached pair of distinct orbits u, v with
Lo(u) = Lo(v) = zp and L, (u) = L,(v) = oo, and (3) orbits of
the form ~y, where each -y, is a positive and negative separatrix.



Example of a focus basin
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Figure: Neighbourhood of a focus.




Phase portrait for ((s)
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Figure: Lower section of the strip [—10,10] x [0, 30].



Near the pole and a real zero
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Near two critical zeros
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Phase portrait for £(s)
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Figure: The phase portrait of z = £(z) in [-20, 20] x [0, 40].



A view out to the right for £(s)
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Figure: The phase portrait of z = £(z) in [20,60] x [0, 40].



Properties of the 5§ = £(s) flow

& Each simple critical zero is a center,
& There are an infinite number of crossing separatrices,

& The separatrices all tend to the x-axis in a manner determined
by the gamma factor,

& With each simple critical zero there is an associated period,
being the transit time on each of the nested periodic orbits.

& The flow is “apparently” a deformation of the flow for
5 = cosh(s)



Relationship with the COSH flow
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Figure: Phase portrait for Z = cosh(z).



Higher up the critical line
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Figure: Zeros near t = 121415.



Hypothetical zero configurations

Band number b is the number of separatrices inside a “band”
crossing each x =0 > 1.

Figure: Hypothetical zero configurations for b = 1,2, 3.



The linear law for the logs of the § = () periods

Let ~y, be the y-coordinate of a zeta zero. Assume RH and all
zeros are simple.

1 .
pr = 5,
T = / ds I" is a closed path
;( s)’
i
T, = im,
log T, = %’Yn + O(log’}/n) = RHS,

Theorem
[BB,2005] Iog Tn, > RHS. Assuming there exists § > 0 such that

RH and |¢'(2 + ivn)| 7t = O(|74|?) then log T, < RHS.



Plot of the linear law for the log periods
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Figure: Plot of logarithm of the period magnitudes against the Riemann
zeros up to 502 = 814.1.



Plot of the residuals

n

Iog(Tn) -4y +10
R

0 100 200 300 400 500 600 700 800 900
Riemann zero A of the & function

Figure: The residuals using a slope of 7/4.



The Lambda function

Let A(s) := 2(27) T (s) cos(%) so ((1 —s) = A(s)((s).

& The contours IA(s) = 0 cut across the critical strip
symmetrically.

& They cut the critical line at the points s = % + iy where ((s) is
real (Gram points) or imaginary, with value A(s) = £1. If A(s) =1
then ((s) is real and if ((s) is a simple zero it is a center. If

A(s) = —1 then ((s) is imaginary and if {(s) is a simple zero it is a
node.

& If 3(s) # 0 then A(s) # 0.



Flow for § = A(s)
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Figure: Phase portrait for § = A(s) with —1 <o <2 and 200 < t < 205.



Equations of the Gram lines

Lemma 1 The contours of SA(s) =0, for 0 < o < 1, differ from
intervals parallel to the x-axis through those points by O(1/t).
Indeed, the contours satisfy the equations, for n € 7,

-0 = @),

where n is even for lines through Gram points and n is odd for lines
through the points where ((s) is imaginary.



Extension to the theorem of Titchmarsh
& The theorem of Titchmarch [1934]:

Jim Z [&eg( +ign) — 2] = 0.

1<n<N
& [BB,2007] If% <o <1, then
I|m N Z [R¢( U+/g,,)—1—(% ’*‘7]—0
1<n<N

& For all o with 0 < ¢ <1 and € with 0 < € < 1 the inequality

> R((o+ign) = (1—€e)N

1<n<N

holds for all N sufficiently large.
& For each o with 0 < o < 1 there exist an infinite number of
positive integers n with R((o + igy) > 0.



Motivation: Backlund's method

Let N(T) be the number of zeros of ((s), including multiplicities,
in the range 0 < §s < T and C is the line from % +iT to infinity
parallel to the x-axis then
(T) 1 ¢'(s)
N(T)=——+1+ =S
== 28 e
If it can be shown that R( is positive on C then {(C) never leave
the right half plane so the integral term has absolute value less

than 1. Hence N(T) is the integer nearest to CILDRNEL )
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