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Abstract

These graded examples illustrate the proof techniques in the paper.

1 Single shift examples

In the following set of examples we show how one might extend the range of
the shifted decomposition by relaxing the constraint a | A(e).

Example 1: Here we count primes p such that p + 1 = 2 · 32u where u
is squarefree and coprime to 2 and 3. We impose the additional constraint
that 5 - u . The leading term of an asymptotic expansion for the number of
such primes up to x is c1 · Li(x) and the aim of the example is to derive
c1 = 0.039.. .

In deriving the leading term we have the summation

Σ1 =
∑
p:p≤x

p+1=18n
5-n, 2-n, 3-n

∑
d:d2|n

µ(d)

We can assume that p is odd. The condition 5 - (p + 1)/18 is equivalent to
p+ 1 ≡ 18, 55, 72 mod 90 where “,” represents “or”, and where the option
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36 is omitted because the only prime solution would be p = 5. Similarly
3 - (p + 1)/18 is equivalent to p + 1 ≡ 18 mod 54. The condition 2 - u is
represented by restricting d to be odd. Therefore we can write

Σ1 =
∑
d:d≥1
d odd

µ(d)
∑
p≤x:

p+1≡0 mod 18d2

p+1≡18,54,72 mod 90
p+1≡18 mod 54

1.

By Lemma ?? there are conditions for the joint congruences in the inner sum
to have any solution. For example (90, 18d2) | 18, 54, 72 which is the same
as (5, d2) | 1, so we derive the condition 5 - d . Each choice of an optional
congruence gives rise, asymptotically, to the same number of primes, giving
the leading coefficient 3. Hence

Σ1

Li(x)
= 3 ·

∑
d≥1, 2,3,5-d

µ(d)

φ({18d2, 90, 54})

=
1

24
·
∏

p 6=2,3,5

(
1− 72

φ({18p2, 90, 54})

)
=

1

24
·
∏
p>5

(
1− 1

p2 − p

)
= 0.039..

Example 2: In this example the form is p+ 1 = u with u squarefree and
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not divisible by 3 or 5. We derive the constant c2 = 0.177.. .

Σ1 =
∑
p≤x

p+1=u, u squarefree
3-u, 5-u

1

=
∑
p:p≤x

p+1≡2 mod 3
p+1≡2,3,4 mod 5

∑
d:d2|p+1

µ(d)

=
∑
d:1≤d

3-d, 5-d

µ(d)
∑
p:p≤x

p+1≡0 mod d2

p+1≡2 mod 3
p+1≡2,3,4 mod 5

1

Σ1

Li(x)
∼ 3 ·

∑
1≤d

3-d, 5-d

µ(d)

φ({d2, 15})

=
3

8

∏
p 6=3,5

(
1− 1

p2 − p

)
= 0.177..

Example 3: In this example, as in Example 1, the form is p + 1 = 18u
with u squarefree and not divisible by 2,3 or 5. We derive the constant
c3 = 0.039.. . In this case we enforce the requirements 2 - u and 3 - u by
making 6u squarefree. Since 5 - u we must have u ≡ 1, 2, 3, 4 mod 5 so
p + 1 = 18u ≡ 18, 36, 54, 72 mod 90. But the option p + 1 ≡ 35 mod 90 has
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no solutions, so is omitted. Again we apply Lemma ?? to show 5 - d :

Σ1 =
∑
p:p≤x

p+1=3(6u), 6u squarefree
5-u

1

=
∑
p≤x

p+1≡18,54,72 mod 90

∑
d:3d3|p+1

µ(d)

=
∑
1≤d

µ(d)
∑
p:p≤x

p+1≡0 mod 3d2

p+1≡18,54,72 mod 90

1

Σ1

Li(x)
∼ 3 ·

∑
d≥1
5-d

µ(d)

φ({3d2, 90})

=
1

8

∏
p 6=5

(
1− 24

φ({3p2, 90})

)
= 0.039..

Example 4: In this example the form is p + 7 = 18u with u squarefree
and not divisible by 2,3 or 5. We derive the constant c4 = c3 = 0.039.. .
We observe that the constant is the same for all prime shifts k ≥ 7. The
only difference between this and Example 3 is in the step where we consider
p+ 7 ≡ 18, 36, 54, 72 mod 90 the value 72 is discarded rather than 36.

Example 5: In this example the form is p + 5 = 18u with u squarefree
and again not divisible by 2,3 or 5. We derive the constant c5 = 4c4/3. As
for Example 4, the only difference between this and Example 3 is the step
p+5 ≡ 18, 36, 54, 72 mod 90 wherein all residues contribute, so the multiplier
is 4 rather than 3.

Finally note that if 2 | k or 3 | k there are no primes of the form
p + k = 18u except when k = 15, wherein the only prime is 3, and k = 16
wherein the only prime is 2.
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2 Double shift examples

We now proceed to count primes p where p+k = a ·u, p−k = b ·v and where
in each case a, b = pe1

1 · · · p
el
l for some e′is ≥ 0, u is squarefree and coprime

to kab , and as before, k, a, b are pairwise coprime. Many combinations of
the e′is do not give rise to an infinite set of primes, so initially the situation
seems quite complicated:

Example 7: Let k = a = 1 and B = {2, 3} so b = 6. If p+ k = 2e13e2 · u
and p − k = 2f13f2 · v , and p > 3 then necessarily one of e2 or f2 is zero
and the other greater than or equal to 1, e1 or f1 = 1 and the other is
strictly greater than 1. To illustrate consider a situation which meets these
constraints where we assume the prime p is odd and u, v squarefree:

p+ 1 = 23 · u,
p− 1 = 2 · 32 · v.

Σ1 =
∑
p:p≤x

p+1=8u
p−1=18v

u, v squarefree

1

=
∑
p:p≤x

p+1≡8 mod 16
p+1≡8,16 mod 24
p−1≡18 mod 36

p−1≡18,36 mod 54

∑
a,b:8a2|p+1
18b2|p−1

µ(a)µ(b)

=
∑
d:1≤d
2,3-d

τ ∗(d)µ(d)
∑
p:p≤x

p≡w mod 72d2

p+1≡8 mod 16
p+1≡8 mod 24
p−1≡18 mod 36

p−1≡18,36 mod 54

1

Σ1

Li(x)
∼ 2 ·

∑
d≥1
2,3-d

τ ∗(d)µ(d)

φ({72d2, 16, 24, 36, 54})

=
2

144

∏
p 6=2,3

(
1− 2

p2 − p

)
= 0.011..
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Note that in the second step inner sum the two given conditions imply
that (a, b) = 1 and the residue w is determined by the Chinese Remainder
Theorem. In the third step the choice p+ 1 ≡ 16 mod 24 has been omitted,
since it gives rise to at most O(1) primes.

Example 8: Keep the same requirements as in the previous example but
add the constraint (u, 5) = 1, (v, 5) = 1. This is reflected in two new
equations

p+ 1 ≡ 8, 16, 24, 32 mod 40

p− 1 ≡ 18, 36, 54, 72 mod 90

where the residues 16 and 54 can be omitted apriori. Then use Lemma ??
to prune out the sets of congruences which don’t have any common solution.
This reduces the number of sets of congruences arising from line 3 below from
18 to 4, accounting for the numerator of the leading coefficient.

Σ1 =
∑
p:p≤x

p+1=8u
p−1=18v

u, v squarefree

1

=
∑
p:p≤x

p+1≡8 mod 16, p+1≡8,16 mod 24
p+1≡8,16,24,32 mod 40

p−1≡18 mod 36, p−1≡18,36 mod 54
p−1≡18,36,54,72 mod 90

∑
a,b:8a2|p+1
18b2|p−1

µ(a)µ(b)

=
∑
d:1≤d
2,3,5-d

τ ∗(d)µ(d)
∑
p:p≤x

p≡w mod 72d2

p+1≡8 mod 16
p+1≡8 mod 24

p+1≡8,24,32 mod 40
p−1≡18 mod 36

p−1≡18,36 mod 54
p−1≡18,36,72 mod 90

1

Σ1

Li(x)
∼ 4 ·

∑
d≥1

2,3,5-d

τ ∗(d)µ(d)

φ({72d2, 16, 24, 40, 36, 54, 90})

=
4

576

∏
p 6=2,3,5

(
1− 2

p2 − p

)
= 0.0062..
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Example 9: Let k = 2 and B = {3, 5} so b = 15. If p + 2 = 2e13e2 · u
and p− 2 = 2f13f2 · v , and p > 5 then necessarily at most one of e1 and f1

is greater than zero and at most one of e2 and f2 is greater than zero. 8.1
First we count odd primes p where there exist u, v squarefree and:

p+ 2 = 33 · u,
p− 2 = 52 · v.

with (u, 2.3.5) = (v, 2.3.5) = 1 so necessarily (u, v) = 1. Then

Σ1 =
∑

p:7≤p≤x
p+2=27u
p−2=25v

u, v squarefree

1

=
∑
p:p≤x

p+2≡27 mod 54
p+2≡27,54 mod 81

p+2≡27,54,81,108 mod 135
p−2≡25 mod 50

p−2≡25,50 mod 75
p−2≡25,50,75,100 mod 125

∑
a,b:27a2|p+2

25b2|p−2

µ(a)µ(b)

=
∑
d:1≤d
2,3,5-d

τ ∗(d)µ(d)
∑
p:p≤x

p≡w mod 675d2

p+2≡27 mod 54
p+2≡27,54 mod 81
p+2≡54 mod 135
p−2≡25 mod 50
p−2≡50 mod 75

p−2≡25,50,75,100 mod 125

1

Σ1

Li(x)
∼ 8 ·

∑
d≥1

2,3,5-d

τ ∗(d)µ(d)

φ({675d2, 54, 81, 135, 50, 75, 125})

=
8

5400

∏
p 6=2,3,5

(
1− 2

p2 − p

)
= 0.0013..

Note that in the second step inner sum the two given conditions imply
that (a, b) = 1 and the residue w is determined by the Chinese Remainder
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Theorem. In the third step the congruences p+2 ≡ 27 mod 135 and p−2 ≡
25 mod 75 have been omitted, since they give rise to at most O(1) primes.
The congruences p − 2 ≡ 81, 108 mod 135 have also been omitted because
when checked against the last set of congruences they fail condition of Lemma
??.

Example 10: Now we generalize Example 8. Let k = 2 and P = {3, 5}
so ℘ = 15.

10.1 First we compute Σ1 which is the number of odd primes p where
there exist u, v squarefree and p+ 2 = 3l ·u, p−2 = 5m ·v for some l,m ≥ 1
and (u, 2.3.5) = (v, 2.3.5) = 1. Then

Σ1(l,m) =
∑

p:7≤p≤x
p+2=3l·u
p−2=5m·v

u, v squarefree

1

=
∑
p:p≤x

p+2≡3l mod 2.3l

p+2≡3l,2.3l mod 3l+1

p+2≡3l,2.3l,3.3l,4.3l mod 5.3l

p−2≡5m mod 2.5m

p−2≡5m,2.5m mod 3.5m

p−2≡5m,2.5m,3.5m,4.5m mod 5.5m

∑
a,b:3l.a2|p+2
5m.b2|p−2

µ(a)µ(b)

=
∑
d:1≤d
2,3,5-d

τ ∗(d)µ(d)
∑
p:p≤x

p≡w mod 3l.5m.d2

p+2≡3l mod 2.3l

p+2≡3l,2.3l mod 3.3l

p+2≡2.3l mod 5.3l

p−2≡5m mod 2.5m

p−2≡2.5m mod 3.5m

p−2≡5m,2.5m,3.5m,4.5m mod 5.5m

1

Σ1(l,m)

Li(x)
∼ 8 ·

∑
d≥1

2,3,5-d

τ ∗(d)µ(d)

φ({3l.5m.d2, 2.3l, 3.3l, 5.3l, 2.5m, 3.5m, 5.5m})

=
8

ϕ(2.3l+1.5m+1)

∏
p 6=2,3,5

(
1− 2

p2 − p

)
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Hence

Σ1

Li(x)
∼

(∑
l,m≥1

8

3l.5m(2.4)

) ∏
p 6=2,3,5

(
1− 2

p2 − p

)
=

1

8

∏
p 6=2,3,5

(
1− 2

p2 − p

)
= 0.112..

10.2 Now count odd primes p where there exist u, v squarefree and p+2 =
3l5m · u, p − 2 = v for some l,m ≥ 1. We spare the reader the details, but
in step 3, for fixed l,m , we arrive at 8 sets of congruences, the same number
as in 9.1 (but different congruences). Hence Σ2 = Σ1

10.3 Next we count odd primes p where there exist u, v squarefree and
some l ≥ 1 so p+ 2 = 3l · u, p− 2 = v . Here the pruning of the congruences
at step three using Lemma ?? depends on the equivalence class of l modulo
4, but, fortunately, we are left with the same number, 4 of valid classes in
each case. The reader is spared the details. This leads to

Σ3(l)

Li(x)
∼ 4 ·

∑
d≥1

2,3,5-d

τ ∗(d)µ(d)

φ({3l.d2, 2.3l, 3.3l, 5.3l, 2, 3, 5})

=
4

ϕ(2.3l+1.5)

∏
p 6=2,3,5

(
1− 2

p2 − p

)

Hence

Σ3

Li(x)
∼

(∑
l≥1

4

8.3l

) ∏
p 6=2,3,5

(
1− 2

p2 − p

)
=

1

4

∏
p 6=2,3,5

(
1− 2

p2 − p

)
= 0.224..
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10.4 Note that there are no odd primes p > 5 such that there exist
u, v squarefree so (u, 30) = 1, (v, 30) = 1 and for some l ≥ 1: p + 2 =
5l · u, p− 2 = v , since the second equation gives p ≡ 1 mod 3 so by the first
3 | u . Now note also that there are no primes p > 5 where there exist u, v
squarefree so (u, 30) = 1, (v, 30) = 1 and p+ 2 = u, p− 2 = v .

10.5 Finally we combine the computations in 10.1-10.5 to count the primes
p > 5 up to x satisfying

p+ 2 = α · u,
p− 2 = β · v

where P = {3, 5} and α, β ∈ 〈P 〉 and (uv, 30) = 1:

Σ

Li(x)
=

2(2Σ1 + Σ3)

Li(x)

=
∏

p 6=2,3,5

(
1− 2

p2 − p

)
= 0.89..

where the leading coefficient has simplified to 1! Numerical evaluation of
other examples indicates that this formula should hold more generally.
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