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Abstract

One of the more spectacular recent advances in analytic number theory has been
the proof of the existence of an infinite number of pairs of prime numbers at a
constant small distance apart. Work on this goes back many years. An illustrated
overview of developments will be given, tracing through the work of Erdos,
Bombieri/Davenport, Goldson/Pintz/Yildrim, Zhang, Tao/Polymath8a/b, and
Maynard. A recent breakthrough by students of Ken Ono will also be described.



Introduction

n! + 2, . . . , n! + n

are n − 1 composites =⇒ lim supm→∞ pm+1 − pm = ∞

We expect lim infm→∞ pm+1 − pm = 2, or there are an infinite number of integers m
such that pm+1 − pm = 2, the twin primes conjecture.

September 2016 the largest known pair of twins had 388342 digits:

2996863034895 × 21290000 ± 1.



Brun/Hardy/Littlewood

Brun showed in the early 1900’s that if (pnj , pnj+1) are all the twins starting with
(3, 5) ∑

j∈N

⎛⎜⎜⎜⎜⎝ 1
pnj

+
1

pnj+1

⎞⎟⎟⎟⎟⎠ =
(
1
3
+

1
5

)
+ · · · < ∞.

and that the number of twins up to x, π2(x) had an upper bound as x → ∞

π2(x) � x

log2 x

for some absolute constant, later conjectured by Hardy and Littlewood to be 2C2

where C2 is the famous twin primes constant:

C2 :=
∏
p≥3

(
1 − 1

(p − 1)2

)
= 0.66016181...



Average Gap

There are approximately x/ log x primes up to x. Thus the average gap is log x.
Can we sometimes get smaller gaps than this average?

year bound people
1926 ( 2

3 + o(1)) log x Hardy/Littlewood/GRH
1940 ( 3

5 + o(1)) log x Rankin/GRH
1940 (1 − c + o(1)) log x Erdős
1954 ( 15

16 + o(1)) log x Ricci
1966 (0.4665 + o(1)) log x Bombieri/Davenport
1972 (0.4571 + o(1)) log x Pil’tjai
1975 (0.4542 + o(1)) log x Uchiyama
1973 (0.4463 + o(1)) log x Huxley
1977 (0.4425 + o(1)) log x Huxley
1984 (0.4394 + o(1)) log x Huxley
1988 (0.2484 + o(1)) log x Maier

Table: Time line of decreasing prime gaps I.



Enter Goldston/Pintz/Yildrim

year bound people
2006 o(log x) Goldston/Pintz/Yildirim
2009 C(log x)

1
2 (log log x)2 Goldston/Pintz/Yildirim

2013 7.0 × 107 Zhang
2013 4680 Polymath8a
2013 600 Maynard
2014 246 Polymath8b

Table: Time line of decreasing prime gaps II.



Who are Goldston/Pintz/Yildrim (GPY)?

Figure: Dan Goldston (1952–), Janos Pintz (1950–) and Cem Yildirim (1961–).



What did GPY do I?

They commence with an admissible k -tuple H = {h1, . . . , hk }. The goal is to
show that there are an infinite number of integers n such that n + H contains at
least two primes. This will be so if for all N ∈ N sufficiently large, we can find at
least two primes in n + H for some n with N < n ≤ 2N.

Let Λ(pm) := log p and Λ(n) = 0 if n is not a prime power.

Their key idea, is that if for some n ∈ (N, 2N] with n > hk and ρ ∈ N we had
⎛⎜⎜⎜⎜⎜⎜⎝

k∑
j=1

Λ(n + hi)

⎞⎟⎟⎟⎟⎟⎟⎠ − ρ log(3N) > 0

then since each Λ(n + hj) < log(3N) we must have at least ρ+ 1 of the
Λ(n + hj) > 0. so at least ρ+ 1 primes in n + H .



What did GPY do II?

Introducing a non-negative weight function w(n)

S1(N) :=
2N∑

n=N+1

⎛⎜⎜⎜⎜⎜⎜⎝
k∑

j=1

Λ(n + hj) − ρ log(3N)

⎞⎟⎟⎟⎟⎟⎟⎠ w(n)

so, if for all N sufficiently large, S(N) > 0 we must have, for at least one n with
N < n ≤ 2N, both w(n) > 0 more than ρ primes in n + H .

Finding a viable definition for the weights w(n) is difficult. Using squares makes
the non-negativity criteria easy to attain, but evaluating the the two sums∑

n≤N Λ(n + hj)w(n) and
∑

n≤N w(n) goes to the heart of the challenge this
problem provides.



What did GPY do III?

GPY “went global” making the weights depend on all k -tuples with hk ≤ h, h
being a fixed but arbitrary parameter. They also “went local” by truncating the von
Mangoldt function, reducing the number of terms in the divisor sum
representation, and introducing a truncation level R � N

1
4k −ε . They use

Λ(n) =
∑
d |n
μ(d) log

(n
d

)
→ ΛR(n) :=

∑
d |n

d≤R

μ(d) log

(
R
d

)
,

and
ΛR(n,H ) := ΛR(n + h1) · · ·ΛR(n + hk ),

and then define
w(n) :=

∑
(h1 ,...,hk )∈[1,h]k

hj distinct

ΛR(n,H )2.

Then S2(N) :=
2N∑

n=N+1

⎛⎜⎜⎜⎜⎜⎜⎝
∑

1≤h0≤h

Λ(n + h0) − ρ log(3N)

⎞⎟⎟⎟⎟⎟⎟⎠ w(n).



What did GPY do IV?

Let Δ := lim inf
n→∞

pn+1 − pn

log pn

Recall hk ≤ h. To get S2(N) > 0 with ρ = 1 requires h ≥ 3
4 log N. Thus

Δ = lim inf
n→∞

pn+1 − pn

log pn
≤ lim inf

N→∞
h

log N
=

3
4

=⇒ Δ ≤ 3
4
,

A distinct disadvantage of this approach is that to form the weights many divisor
sums are multiplied together, forcing them to be made very short, i.e. choosing R
very small relative to N.



What did GPY do V?

GPY overcame the many short divisors problem by defining a polynomial

PH (n) = (n + h1) · · · (n + hk ),

and then using the generalized von Mangoldt function Λk (n), which is zero if n
has more than k prime factors.

Let Λk (n) :=
∑
d |n
μ(d)

(
log

n
d

)k

,

Then Λk (PH (n)) � 0 means each of the translates n + hj must be a prime
(power).

Truncating ΛR(n,H ) :=
1
k !

∑
d |PH (n)

d≤R

μ(d)

(
log

R
d

)k

.

This allows us to detect a prime tuple with a single divisor sum. However when
applied it resulted in Δ ≤ 0.1339.



What did GPY do VI?

The new idea was to introduce an additional parameter l, as small as possible,
with 1 ≤ l ≤ k − 2 and consider k -tuples H , detecting prime (powers) with

ΛR(n,H , l) :=
1

(k + l)!

∑
d |PH (n)

d≤R

μ(d)

(
log

R
d

)k+l

.

Then if ΛR(n,H , l) � 0, H must have at least k − l ≥ 2 prime terms, so we are
done.

The expression to check for positivity is then

S3(N) :=
2N∑

n=N+1

⎛⎜⎜⎜⎜⎜⎜⎝
∑

1≤h0≤h

Λ(n + h0) − ρ log(3N)

⎞⎟⎟⎟⎟⎟⎟⎠
∑

(h1 ,...,hk )∈[1,h]k
hj distinct

ΛR(n,H , l)2,

and this enabled Δ = 0 to be deduced, using a much greater value of R � N
1
4 −ε .



Zhang and his wonderful breakthrough

An unlikely creative genius

Figure: Yitang Zhang (1955 –)

Zhang’s theorem

There are an infinite number of primes such that pn+1 − pn ≤ 7 × 107.



Interlude: the Bombieri-Vinogradov theorem

Enrico Bombieri (1940–)

Let A > 0 and if B := 2A + 5 let Q :=
√

x/(log x)B . Then there is a constant
C > 0 such that ∑

q≤Q

max
a mod q
(a,q)=1

∣∣∣∣∣∣θ(x, q, a) −
x
ϕ(q)

∣∣∣∣∣∣ ≤
Cx

logA x
.

=⇒
∑

q≤Q maxa mod q
(a,q)=1

∣∣∣∣θ(x, q, a) − x
ϕ(q)

∣∣∣∣
Q

≤ C
√

x

logB−A x
.



What did Zhang do?

Yitang Zhangs Theorem of 2014

There exist constants η, δ > 0 such that for any given integer a, we have for

θ(x, q, a) :=
∑
p≤x

p≡a mod q

log p,

as x →∞ ∑
q≤Q

(q,a)=1
q y-smooth

q square-free

∣∣∣∣∣∣θ(x, q, a) −
x
ϕ(q)

∣∣∣∣∣∣ �A
x

logA x

where Q = x
1
2 +η and y = xδ. Zhang used η/2 = δ = 1/1168 and, in his

application to bounded prime gaps needed 414η + 172δ < 1.



Why did Zhang extend Bombieri-Vinogradov ?

In the GPY method, to count sums involving θ(n + hi), for fixed divisors
d | PH (n) we split the sum into arithmetic progressions modulo d and then count
using Bombieri-Vinogradov

k∑
j=1

∑
x<n≤2x

d |PH (n)

θ(n + hj) =
k∑

j=1

∑
m mod d

d |PH (m)

∑
x<n≤2x

n≡m mod d
(d,n+hj )=1

θ(n + hj).

To get bounded gaps Zhang needed to push the range of Bombieri-Vinogradov to
slightly bigger than Q =

√
x, which is more than half of his paper, and uses

highly sophisticated techniques, such as Deligne’s mutivariable exponential sum
estimates, which come from his celebrated solution to the Riemann hypothesis
for varieties over finite fields. Tao/Polymath8a then improved Zhang, replacing
smooth integers by those they called densely divisible, and optimizing his
parameters.



What did Maynard and Tao do next?

Figure: James Maynard (1987–) and Terence Tao (1975–)



Brief details of the Maynard/Tao/Polymath approach: the functions

First, working quite separately, they defined a multivariable weight using

d1 | n + h1, . . . , dk | n + hk instead of d | PH (n) and

d1 · · · dk ≤ R instead of d ≤ R .

Let F be a fixed piecewise differentiable function supported on the simplex

Rk :=

⎧⎪⎪⎨⎪⎪⎩(x1, . . . , xk ) ∈ [0, 1]k :
k∑

i=1

xi ≤ 1

⎫⎪⎪⎬⎪⎪⎭ .
The set of all such functions will be denoted Sk . Maynard optimizes over Fs
defined by families of symmetric polynomials of degree two, Polymath of degree
three, but also varying the simplex slightly.



The weights

Let W be a product of small primes, W :=
∏

p≤D0
p, D0 := logloglog N, v0 is

chosen so each n has (n,W) = 1, i.e. n has no small prime factors. When
(
∏k

i=1 di ,W) = 1, define the weights:

λd1 ,...,dk :=

⎛⎜⎜⎜⎜⎜⎝
k∏

i=1

μ(di)di

⎞⎟⎟⎟⎟⎟⎠
∑

r1 ,...,rk∀ i di |ri∀ i (ri ,W)=1

μ(
∏k

i=1 ri)
2∏k

i=1 ϕ(ri)
F

(
log r1

log R
, . . . ,

log rk

log R

)
.

When (
∏k

i=1 di ,W) � 1 set λd1 ,...,dk = 0. Maynard offers extensive motivation for
this choice of weights, which are fundamental to his method.



The multivariable integrals
Next define two types of integrals depending on F over the simplex:

Let

Ik (F) :=
∫ 1

0
· · ·

∫ 1

0
F(t1, . . . , tk )

2 dt1 . . . dtk ,

J(m)

k (F) :=
∫ 1

0
· · ·

∫ 1

0

(∫ 1

0
F(t1, . . . , tk ) dtm

)2

dt1 . . . dtm−1dtm+1 . . . dtk .

Maynard’s fundamental lemma: If F is such that Ik (F) � 0 and for all m with

1 ≤ m ≤ k , J(m)

k (F) � 0, then S > 0 =⇒ ρ+ 1 primes in an n + H , where

S1 =
ϕ(W)k N logk R(1 + o(1))

Wk+1
Ik (F),

S2 =
ϕ(W)k N logk+1 R(1 + o(1))

Wk+1

k∑
m=1

J(m)

k (F),

S := S2 − ρS1 =
∑

N≤n<2N
n≡v0 mod W

⎛⎜⎜⎜⎜⎜⎝
⎛⎜⎜⎜⎜⎜⎝

k∑
i=1

χP(n + hi)

⎞⎟⎟⎟⎟⎟⎠ − ρ
⎞⎟⎟⎟⎟⎟⎠ wn .



What is Polymath?

• Polymath projects were initiated by Timothy Gowers in 2009. Gower’s popular
Weblog includes “Is massively collaborative mathematics possible?”.

•Within a few days he had already formulated and revised a set of rules in
“Questions of procedure”, which described the process he envisaged.

• He listed several suitable topics and given some initial ideas, in “Background to
a Polymath project”, to start the process: the Hales-Jowett theorem, the
Fursenberg-Katznelson theorem, Szemerédi’s regularity lemma, the triangle
removal lemma, and so-called sparse regularity lemmas.

• By the time Terry Tao had proposed Polymath8, seven other projects had been
initiated.



Is massively collaborative mathematics possible ? (Gowers’ Blog)

The idea of a Polymath project is anybody who had anything to say about the
problem could contribute brief ideas even if they were undeveloped or maybe
wrong.

• Sometimes luck is needed to have the idea that solves a problem. If lots of
people think about a problem, then, probabilistically, there is more chance that
one of them will get lucky.

• Different people know different things, so the knowledge that a large group can
bring to bear on a problem is greater than the knowledge that one or two
individuals will have.

• Some folk like to throw out ideas, others to criticize them, others to work out
details, others to formulate different but related problems, others to step back
from a big muddle of ideas and fashion some more coherent picture out of them,
others to compute and construct examples.

• In short, if a large group of mathematicians could connect their brains efficiently,
they could perhaps solve problems very efficiently as well.



A computation to ponder: gap to the next prime

0 10 20 30 40 50
n

2000

4000
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10 000

12 000

14 000
g(n)

Figure: Next prime gap distribution for primes less than 106.



Additional results of Maynard and Polymath

(1) (Maynard) For all m ∈ N we have an infinite number of n with
pn+m − pn � m3e4m =: Bm.

(2) (Maynard+Elliot-Halberstam) pn+1 − pn ≤ 12 for infinitely many n.

(3) (Polymath8b) pn+1 − pn ≤ 246 for infinitely many n.

(4) (Polymath+Elliot-Halberstam) pn+1 − pn ≤ 6 for infinitely many n.



Further results are flowing like a stream
Granville’s “arithmetic” list:

(1) (Pollack+GRH) Hooley has shown that GRH =⇒ Artin, his primitive root
conjecture. Now any such integer g is a primitive root for each of infinitely many
m-tuples of primes which differ by no more than Bm.

(2) (Pintz) For all k ≥ 2, there exists an integer B > 0 such that there are infinitely
many arithmetic progressions of primes pn , . . . , pn+k such that each of
pn + B , . . . , pn+k + B is also prime.

(3) (Thorner) There exists infinitely many pairs of distinct primes p, q such that
both elliptic curves py2 = x3 − x and qy2 = x3 − x have finitely many (ditto
infinitely many) rational points.

(4) (Maynard) For all x, y ≥ 1 there are � x exp(−√log x) integers n ∈ (x, 2x]
with more than� log y primes in every interval (n, n + y]

Ken Ono’s students recent result:

(5) (Alweiss, Luo) For any δ ∈ [0.525, 1] there exist positive integers k , d such that
the interval [x − xδ, x] contains �k xδ/(log x)k pairs of consecutive primes
differing by at most d.
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Thanks for listening.


