
Numerical Methods for Fluid Flows

In these sections we give some introductory material for the numerical anal-
ysis of simple aspects of the partial di�erential equations commonly found
in modelling geophysical �ows. Accuracy and stability of numerical methods
are covered.

(1) De�nitions
(2) Modelling errors
(3) Methods for the approximation of derivatives
(4) Finite volume approximations
(5) Von Neumann stability analysis for turbulent �ows
(6) Inversion of large sparse matrices arising from implicit methods
(7) Advective and di�usive �ows in 1D
(8) Highly di�usive �ows in 1D
(9) Finite volume and leapfroging for purely advective 1D �ows
(10) Initial and boundary conditions for the leapfrog method for advective
1D �ows
(11) Stability analysis for the leapfrog method for advective 1D �ows
(12) Upstream upwind or donor cell method
(13) The Lax-Wendro� method
(14) The Crank-Nicholson method
(15) 1D Advection and di�usion with a source/sink term
(16) 2D Advective �ows - double 1D discretizations
(17) Operator splitting methods for 2D advection - Strang splitting
(18) The discrete Poisson equation
(19) Jacobian evaluations

38

Numerical Methods for Geophysical Flows

Contents of this linked notes:

In this link we give a summary introduction to the elements of numerical
analysis for geophysical �ows. We consider only simple time dependent equa-
tions and di�usion which is su�cient to illustrate some of the main issues. In
further sections we consider advection, sources and sinks, again in the con-
text of a single equation. The reader is directed to Cushman-Roisin's text,
�Introduction to Geophysical �uid dynamics" 2nd edition, for a much more
complete account, especially Chapter 5 and Appendix C.2-C.4.
(1) De�nitions:

In this section we summarize methods for some of the schemes used in com-
putational �uid dynamics to approximate di�erential expressions f(x) with
�nite di�erence approximations. Here a method is derived using Taylor series
approximations with assumptions being made about the di�erential order of
variable coe�cients. A method M(∆x) then satis�es

f(x) = M(∆x) +O(∆xn)

where ∆x → 0 and where the positive integer n ≥ 1 is the so-called order of
the method, and O(∆xn) := O((∆x)n) the truncation error. The implied
constant can depend on the coe�cient functions and parameters that appear
in f(x).

We say a method is consistent if

lim
∆x→0

M(∆X) = f(x).

We say a method is convergent if the solution to the method when set to
zero for �xed ∆x (the discrete solution) tends to the solution of the exact
equation f(x) = 0 as ∆x tends to 0.

The accuracy order of a method is the largest value of n ≥ 1 such that

f(x) = M(∆x) +O(∆xn),

in which case say it is nth order accurate. If n = 1 we say the method is
�rst-order accurate.

39

We say a method is overly-stable if the Euclidean norm of the discrete
solution tends to zero monotonically as ∆x → 0. It is stable if the norm
of the discrete solution remains bounded on every bounded interval in the
sense that for each T > 0, if xn is the solution to the nth iteration (i.e. with
t = n∆x) and x0 the initial condition, then there is a �xed constant C > 0
(which might depend on T) such that

∥xn∥ ≤ C∥x0∥

when n∆x ≤ T .

A method is unstable if the solution to the discrete equation grows signif-
icantly faster than the solution to the exact equation. It is over stable if
the solution to the discrete equation decreases to zero.

Well-posed partial di�erential equation: A PDE is well posed if two
conditions are satis�ed. (a) A unique solution exists for each choice of data
values and (b) the mapping from data values to solutions is continuous in
some topology.

Lax-Richmeyer equivalence theorem: A consistent method for a linear
partial di�erential equation for which the initial value problem is well-posed
is convergent if and only if it is stable.

(2) Modelling errors:Modelling errors arise because the model equations
used to describe a particular phenomena do not approximate all of its fea-
tures. The model often is produced by simplifying equations, often making
assumptions that a �ow is more uniform in particular ways than it is in
reality or by averaging over time, space or ensembles of solutions.
(2.1) Discretization errors: These errors arise when a set of model equa-
tions is discretized and the discrete equations solved for some particular value
of parameters such as ∆t and ∆x. The discretization error is the di�erence
between the exact equation and the solution of the discretized equation.

(2.2) Iteration errors: These errors arise for iterative methods since the
the iterations must be terminated at some �nite value of n. The iteration
error is the di�erence between the solution to the discrete equation as n → ∞
and the solution to the nth iterate. It depends on n and should tend to zero
as n → ∞.

(2.3) Rounding errors: These errors arise since only a �nite number of
digits are used to solve the discretized equations.

40

Acknowledgement: Section 4.8, �Introduction to geophysical �uid dynam-
ics: physical and numerical aspects" 2nd edition, by Benoit Cushman-Roisin
and Jean-Marie Beckers, AP, Elsevier, 2011.

(3) Methods for the approximation of derivatives

(3.1) Explicit Euler approximation to the �rst derivative: Methods
are derived using Taylor series approximations combined and manipulated
in various ways, assuming that all derivatives which are used exist and are
continuous. If tn := n∆t and un := u(tn), with all other variables and
parameters appearing in u suppressed, then

du

dt

∣∣∣∣
tn

=
un+1 − un

∆t
+O(∆t).

This is the �rst order Euler method. It is called explicit because if we
consider the equation

du

dt
= F (t, u),

then we can write un+1 = un + ∆tF (tn, un) := un + ∆tF n, so un+1 can be
determined directly once we have the value of un. It is also called a forward
method, and is �rst order.

If we write
un+1 = un +∆tF (tn, un+1),

given un, to �nd un+1 we need to solve an equation which could be di�cult.
The method is called implicit or a backward method and is again �rst
order.

(3.2) Semi-implicit trapezoidal method: Combining the explicit and
implicit Euler methods by taking the average of the right hand sides, we get

un+1 = un +∆t
F n + F n+1

2
.

It is second order, the best of the so-called two-point methods. We can
increase the order of accuracy by using points between tn and tn+1 and higher
order polynomial interpolations for F .

41

(3.3) Leap-frog method: This method uses the values of u at tn−1 and
tn to obtain an explicit second order method when approximating the �rst
derivative of u.

un+1 = un−1 + 2∆tF n.

(3.4) Fourth order approximation to the �rst derivative: Using un-
determined coe�cients, with evaluations of u(tj) at �ve points with n− 2 ≤
j ≤ n+ 2, to get un−2, un−1, un, un+1, un+2 so

du

dt

∣∣∣∣
tn

≈ a−2u
n−2 + a−1u

n−1 + a0u
n + a1u

n+1 + a2u
n+2.

We impose the conditions that the sum of the aj is 1 and that the discrete
solution must be consistent, and then optimize the set of solutions such that
the truncation errors of orders two, three and four should be zero when we
set ∆t = 0. We can then solve explicitly 5 equations in 5 unknowns for the
coe�cients aj, obtaining eventually

du

dt

∣∣∣∣
tn

=
4

3

(
un+1 − un−1

2∆t

)
− 1

3

(
un+2 − un−2

4∆t

)
+O(∆t4).

(3.5) Second order approximation to the second derivative: Using
the Taylor expansion method, expanding forward and backwards about tn,
we get

d2u

dt2

∣∣∣∣
tn

=
un−1 − 2un + un+1

∆t2
+O(∆t2).

(3.6) Predictor-corrector methods: These methods overcome the di�-
culty inherent in implicit methods of the need to evaluate F n+1 when un+1 is
not yet available. First we make an initial guess u∗ ≈ un+1, the predictor.
This might be found, for example, by making a forward Euler method step:

u∗ := un +∆tF (tn, un).

Then use a trapezoidal interpolation between un and u∗, the corrector step,
to get

un+1 := un +∆t
F (tn, un) + F (tn+1, u∗)

2
.

With this value of un+1 we get a second order method at roughly twice the
cost of the Euler method and using only two preliminary direct evaluations
of un and u∗.

42

Acknowledgement: Section 1.10, �Introduction to geophysical �uid dy-
namics: physical and numerical aspects" 2nd edition, by Benoit Cushman-
Roisin and Jean-Marie Beckers, AP, Elsevier, 2011.

(4) Finite volume approximations

To illustrate this method we use the 1D advection plus di�usion equation
for temperature T = T (x, t). We use the �nite volume method to solve the
equation

∂T

∂t
+ u

∂T

∂x
= kT

∂2T

∂x2
,

which we write in the form

∂T

∂t
+

∂q

∂x
= 0 where the ��ux" q = uT − kT

∂T

∂x
, q = q(x, t).

Label distinct points in the domain of the �ow by

x1
2
≤ · · ·x

j−1
2
< x

j+
1
2
≤ x

m−1
2

and set Ij := [x
j−1

2
, x

j+
1
2
] the jth �cell", and integrate with respect to x over

Ij to get

d

dt

∫
Ij

T dx+ q
j+

1
2
− q

j−1
2
= 0, where q

j±1
2
(t) := q(x

j±1
2
, t).

Fixing t and de�ning ∆xj := xj+1/2−xj−1/2 we de�ne an average temperature

T j(t) =
1

∆xj

∫
Ij

T dx.

Fixing j we then get an exact equation for the time evolution of the average
temperatures

dT j

dt
+

q
j+

1
2
− q

j−1
2

∆xj

= 0.

Next, using a subscript for the nth time point tn = n∆t and integrating over
t ∈ [tn, tn+1] =: Kn, with ∆tn := tn+1 − tt, we get with �xed j

T
n+1

j − T
n

j =

∫
Kn

q
j+

1
2
dt−

∫
Kn

q
j−1

2
dt

∆xj

.

43

Setting the time average of the �ux to

q̂
j±1

2
:=

1

∆tn

∫
Kn

q
j±1

2
dt,

we get the �nal form of the discretized temperature evolution equation in
1D, namely

T
n+1

j − T
n

j

∆tn
+

q̂
j+

1
2
− q̂

j−1
2

∆xj

= 0, 1 ≤ j ≤ m− 1, 0 ≤ n ≤ N.

Note that all terms in this system of equations are numerical and exact.
To close this system, we need to be able to calculate the q̂ in terms of the
T̄ , which requires approximations. Howver, the exact system is very useful
because of its easy to derive conservation properties. For example it exhibits
local conservation of �ux across grid cell spacial boundaries. Furthermore,
the equations when manipulated and added show that

d

dt

∫ x
m−

1
2

x 1
2

T dx = q̂1
2
− q̂

m−1
2
.

That is to say we get global conservation in that the total heat content evolves
over time according to the �ux of heat at the boundaries of the domain.
Acknowledgement: Chapter 3, �Introduction to geophysical �uid dynam-
ics: physical and numerical aspects" 2nd edition, by Benoit Cushman-Roisin
and Jean-Marie Beckers, AP, Elsevier, 2011.

Acknowledgement: Section 3.8, �Introduction to geophysical �uid dynam-
ics: physical and numerical aspects" 2nd edition, by Benoit Cushman-Roisin
and Jean-Marie Beckers, AP, Elsevier, 2011.

(5) Von Neumann stability analysis for turbulent di�usion:

In this section we study the stability of numerical methods using so-called von
Neumann stability analysis. This analyses the stability of a generic Fourier
mode. A method is stable is all of the applicable modes are stable.
(5.1) Euler method stability: Consider a PDE for the one spacial dimen-
sion di�usion of a tracer concentration c(t, z) with di�usivity κ

∂c

∂t
= κ

∂2c

∂z2

44

on a domain (t, z) ∈ [0, T]× [0, h]. Choose ∆z > 0 and ∆t > 0 and discretize
[0, h] with equally spaced points zj = (j − 3/2)∆z, j = 1, . . . ,m so ∆z =
h/(m− 2). Choose boundary conditions of the so-called Neumann type so

∂c

∂z
= 0, at z = 0, h for all t ≥ 0.

Choose an initial condition which is a single Fourier mode with �xed j ≥ 0
and constants C0, C1

c(z, 0) := C0 + C1 cos

(
jπz

h

)
, j ≥ 0, 0 ≤ z ≤ h.

Then the form

c(z, t) := C0 + C1 cos

(
jπz

h

)
exp

(
−j2π2κt

h2

)
, j ≥ 0, 0 ≤ z ≤ h, t ≥ 0,

is a solution to the system which satis�es the initial and boundary conditions.
We call this the �the analytic solution". Fourier analysis establishes the space
of solutions generated in a suitable topology by linear combinations of these
j dependent solutions. Note that for �xed j the solution tends exponentially
in time to the constant value C0, which is the behaviour expected of di�usion
with as usual κ > 0.
If we discretize the PDE using the second order numerical method for the
second derivative in space and the explicit Euler method in time, we obtain
solutions which grow exponentially in time. We will show how von Neumann
stability analysis reveals this behaviour and the values of ∆t, ∆z for which
the solutions are unstable, without solving the equation.
First we recast the trial solutions, replacing z by κ∆z and t by n∆t to get
the form

c̃nj := A exp(i(kzj∆z − ωn∆t)

= A exp(ωin∆t) exp(i(kz∆zj − ωr∆tn)

= ρn exp(ikz∆zj),

where A is complex, kz real and positive, ω = ωr + iωi complex, and c̃nj is a
new variable representing the discrete solution. If ωi > 0 then the solutions
will grow exponentially in time. Here we de�ne the complex ampli�cation
factor ρ by

ρ := exp(∆t(ωi − iωr)) =⇒ |ρ| = exp(ωi∆t) and thus ωi =
ln |ρ|
∆t

.

45

Therefore stability corresponds to |ρ| ≤ 1 so −1 ≤ ρ ≤ 1 if ρ is real.
If we substitute the expression in terms of the ampli�cation factor for c̃nj into
the discretized di�usion equation with the second order in space method for
the second derivative and explicit Euler method for the time derivative of c̃
and set

D =
κ∆t

(∆z)2
,

we get for the discretized equations

c̃n+1
j = c̃nj +D(c̃nj+1 − 2c̃nj + c̃nj−1).

Substituting the form derived previously, namely c̃nj = ρn exp(ikz∆zj), into
these equations and simplifying by cancelling ρn exp(ikz∆zj), we get

ρ = 1− 4D sin2

(
kz∆z

2

)
.

For stability, in particular we must satisfy the necessary condition

2D sin2(kz∆z/2) ≤ 1.

Stability for all wave numbers kz requires in particular for those which satisfy

kz∆z

2
=

π

2
± nπ,

so we must have D ≤ 1
2
, for this mixed second order/�rst order method. In

other words, that κ∆t/(∆z)2 ≤ 1
2
.

Quite a lot of information can be extracted from this condition. For example,
if particular values ∆t, ∆z satisfy it, but more accuracy is needed, say by
decreasing ∆z by a factor of 10, then the time step must be reduced by a
factor of 100 to maintain the value of D. Thus the method would required
number of computation steps should be increased by a factor of 1000!
We can also obtain information from the value of τ which is de�ned, for a
particular Fourier mode, the ratio of the discrete solution and the analytic
solution of the original equation. To see �rst note

c = A exp(i(kzz − ωt) with
∂c

∂t
= κ

∂2c

∂z2

46

gives for the analytic damping coe�cient the expression

ωi = −κk2
z .

For the numerical coe�cient we have seen

ωi =
ln |ρ|
∆t

=
ln
∣∣1− 4D sin2 (kz∆z/2)

∣∣
∆t

.

This gives the ratio of the numerical damping factor to the analytic damping
factor, using D = κ∆t/∆z2, in the form

τ :=
numerical damping

analytic damping
=

− ln
∣∣1− 4D sin2 (kz∆z/2)

∣∣
Dk2

z∆z2
.

Expanding the sin and ln in a series about 0 then gives after some manipu-
lation and simplifying

τ = 1 +

(
2D − 1

3

)(
kz∆z

2

)2

++O(k4
z∆z4).

IfD < 1/6 then asymptotically we would have τ < 1 so the numerical method
would dampen at a rate per iteration n which is slower than the analytic
mode. If however D > 1/4 we would have for a stable solution −1 ≤ ρ < 0
for large kz. Thus the amplitude sequence ρ1, ρ2, . . . would alternate in sign,
leading to an oscillating and thus unphysical mode. To avoid this spurious
behaviour in the method therefore we should ensure 1/6 < D < 1/4, which is
not at all obvious from the discrete equations of the method. Given the value
of κE for a particular application, these conditions could be very di�cult to
meet.

(5.2) Stability of the Implicit Euler method:

With D = κ∆t/∆z2 and c̃nk representing the solution at xk at time step n as
before, we for the implicit Euler method the discretized equations

c̃n+1
k = c̃nk +D(c̃n+1

k+1 − 2c̃n+1
k + c̃n+1

k−1), k = 2, . . . ,m− 1.

Then with kz the wave number in the z-axis direction, we have

ρ = 1− 2ρD(1− cos(kz∆z) =⇒ 0 < ρ =
1

1 + 4D sin2(kz∆z/2)
< 1.

47

Since ρ = |ρ| < 1, all modes are stable, so we say the numerical solution
is unconditionally stable. From the stability point of view we can make
arbitrary positive choices for ∆t, ∆z, but need to make them as small as
possible to attain a reasonably close approximation to the analytic solution.
We also have, using the analytic damping rate from Step (1) namely −κk2

z ,

τ :=
numerical damping

analytic damping
=

ln |1 + 4D sin2(kz∆z/2)|
4D(kz∆z)2

.

If D is small, say D = 0.1, then τ is close to 1 and the damping rate of the
computed solution is reasonable. However as D increases, say D = 10, then
τ decreases rapidly as a function of kz∆z, which is unsatisfactory.
Note the stability of the method is somewhat countered by the need to solve
a sparse system of linear equations to move from time step tn to step tn+1,
an added computational burden. Regarding an example of an approach to
solving the discrete system which is needed at each time step, see the notes
below on solving large sparse linear systems of equations.

(5.3) Leapfrog method instability:

The leapfrog method has the attraction of being direct. We go directly from
step tn−1 to step tn+1, using values at tn only for the space derivative terms.
However it has a disadvantage which has not arisen in any of the previous
methods we have considered. We have for each k:

c̃n+1
k = c̃n−1

k + 2D(c̃nk+1 − 2c̃nk + c̃nk−1), D =
κ∆t

∆z2
.

ρ =
1

ρ
−8D sin2

(
kz∆z

2

)
=⇒ ρ2+2bρ−1 = 0 where b = 4D sin2(kz∆z/2) > 0.

This equation is quadratic with solutions ρ = −b ±
√
b2 + 1. The solution

ρ = −b +
√
b2 + 1 > 0 is physical. For wave numbers with kz∆z ≪ 1

we have b ≪ 1 so ρ is small and positive, but for the other solution ρ =
−b−

√
b2 + 1 < −1 so the solution is unstable, no matter what the value of

b. The numerical method will not be able to avoid this spurious solution, so
its called unconditionally unstable, which is a pity. There are however ways
of avoiding the phenomena, such as using an alternative method for di�usion
at an earlier step and leapfrog for other terms at step n, and the like.

48

(5.4) Stability for multi-dimensional di�usion:
The example equation is

∂c

∂t
= A

∂2c

∂x2
+ A

∂2c

∂y2
+ κ

∂2c

∂z2

where A is the horizontal di�usion coe�cient and κ the vertical coe�cient.
Then, suppressing the indices i, j, k we get

c̃(tn+1, xi, yj, zk) = c̃n+1 = c̃n +
A ∆t

∆x2
(c̃ni+1 − 2c̃n + c̃ni−1)

+
A ∆t

∆y2
(c̃nj+1 − 2c̃n + c̃nj−1)

+
κ∆t

∆z2
(c̃nk+1 − 2c̃n + c̃nk−1).

Substituting a single mode of the shape

c̃n := Bρn exp(i(iwx∆x+ jwy∆y + kwz∆z))

for a stable solution we must have necessarily

A ∆t

∆x2
+

A ∆t

∆y2
+

κ∆t

∆z2
≤ 1

2
.

For geophysical applications, since di�usion is only really signi�cant in the
vertical direction, it is sometimes worthwhile to make the code implicit only
in the vertical z direction:

c̃(tn+1, xi, yj, zk) = c̃n+1 = c̃n +
A ∆t

∆x2
(c̃ni+1 − 2c̃n + c̃ni−1)

+
A ∆t

∆y2
(c̃nj+1 − 2c̃n + c̃nj−1)

+
κ∆t

∆z2
(c̃n+1

k+1 − 2c̃n+1 + c̃n+1
k−1).

Acknowledgement: Section 5.4, �Introduction to geophysical �uid dynam-
ics: physical and numerical aspects" 2nd edition, by Benoit Cushman-Roisin
and Jean-Marie Beckers, AP, Elsevier, 2011.

49

(6) Inversion of large sparse matrices arising with implicit methods:

There exist many iterative solvers for the large sparse matrix equations which
appear with linear implicit methods. Here x is a vector of unknowns at nodal
points in the domain, A a matrix of coe�cients, and b a vector of data
values, normally including boundary values, sources or sinks. These can be
found often in software library black-box routines with names like �Jacobi"
or �Gauss-Sidel", with quite simple basic structures. The most di�cult and
fussy task is constructing mappings between the model variables and a given
library routine. Note that in geophysical �uid dynamics only a small number
of numerical (not time) iterations is normally needed.
The most important numerical measure to be aware of is the condition
number of the coe�cient matrix A. See
nhigham.com/2021/06/08/bounds-for-the-matrix-condition-number/

Example: Let the problem to be solved for x be Ax = b. Write

A = B−C ⇐⇒ C = B−A,

where B is easy to invert. For example one could choose a diagonal matrix with
all entries nonzero. Choose a starting vector x(0) and set up the iterative method
in the form

Bx(n+1) = Cx(n) + b =⇒ x(n+1) = x(n) +B−1(b−Ax(n)).

If x is the solution (we are assuming A is invertible), then letting n→ ∞ we get

x = x+B−1(b−Ax) =⇒ Ax = b.

This shows the iterative method gives the true solution in the limit.

50

(7) Advective and di�usive �ows in 1D:

Here we consider the equation for the concentration of a tracer, which might be for
example heat or salt, but not u, v, w:

∂c

∂t
+ u

∂c

∂x
+ v

∂c

∂y
+ w

∂c

∂z
=

∂

∂x

(
A
∂c

∂x

)
+

∂

∂y

(
A
∂c

∂y

)
+

∂

∂z

(
νE
∂c

∂z

)
+A−Bc,

where A,B are constants. This involves considerable additional complexity than
equations considered so far. Methods and issues to do with its numerical analysis
will be considered in this section. First we consider its scale analysis.
Paramount is the relative scale of the advective terms and the di�usion terms. Let
U be a horizontal speed scale, ∆c a scale for the change in concentration and K a
di�usivity scale i.e. for A or νE . Then

advection

di�usion
=

U∆c/L

K∆c/L2
=
UL

K
=: Pe.

The dimensionless ratio Pe is called the Peclet number. If Pe ≪ 1 (typically
Pe ≤ 0.1 then di�usion is signi�cantly larger than advection, and we can, at least
in a preliminary analysis, drop the advective terms from the equation. If Pe ≫ 1
(typically Pe ≥ 100) then the reverse applies and we can drop the di�usion terms
from the equation. We may need to consider situations in which di�usion is im-
portant only in one direction, say the vertical and advection only in the horizontal.
For GFD �ows generally advection dominates di�usion.

Acknowledgement: Chapter 6, �Introduction to geophysical �uid dynamics:
physical and numerical aspects" 2nd edition, by Benoit Cushman-Roisin and Jean-
Marie Beckers, AP, Elsevier, 2011.

(8) Highly di�usive 1D �ows:

We consider the example of 1D �ows in the x-direction, with u positive and constant
with no source or sink (A = B = 0) and constant di�usivity A . Then the equation
simpli�es to the form

u
dc

dx
= A

d2c

dx2
=⇒ c(x) = C0 + C1 exp(ux/A).

If the domain of the �ow is [a, b], then because of the exponential increase at the
boundary b, we have a boundary layer of �thickness" A /u. If this is smaller than the
grid size then di�usion must be neglected, at least near the downstream boundary
x = b. Thus, if we retained the di�usive term for a generally highly advective �ow,

51

near a relevant boundary extra care must be taken since the di�usive term will
dominate in that region.
Acknowledgement: Section 6.4, �Introduction to geophysical �uid dynamics:
physical and numerical aspects" 2nd edition, by Benoit Cushman-Roisin and Jean-
Marie Beckers, AP, Elsevier, 2011.

(9) Finite volumes and leapfroging for purely advective 1D �ows:

Consider the discretization of a highly advective 1D �ow, completely ignoring dif-
fusion with initial condition c = c0(x) and assume u > 0 is constant. The equation
and its analytic solution is

∂c

∂t
+ u

∂c

∂x
= 0 =⇒ c = c0(x− ut).

Integrating with respect to x from xi−1/2 to xi+1/2 with the �ux qi−1/2 := uc|i−1/2,

and with ci the average value of the concentration c over the ith cell
[
xi−1/2, xi+1/2

]
,

we get

dci
dt

+

q
i+

1
2
− q

i−1
2

∆x
= 0.

To relate the �uxes qi−1/2 to the average concentrations ci over the i cell, we replace
the �ux values qi± 1

2
with the discretized approximations

q̃
i−1

2
:= −u×

(
ci − ci−1

2

)
=⇒ dci

dt
= −u

(
ci+1 − ci−1

2∆x

)
.

Summing i over all cells we get cancellation apart from the �rst and last cells. This
means the total amount of tracer is conserved. Multiplying by ci on the right and
summing we get

d

dt

(∑
i

(ci)
2

)
= − u

∆x

∑
i

cici+1 +
u

∆x

∑
i

cici−1

This shows variance is conserved also. Note however that at this stage of the
derivation time has not been discretized. If we do this, the conservation properties
no longer hold.
However, we claim that trapezoidal time discretization conserves variance. To see
this consider the equation for each cell labelled i with discrete tracer �eld c̃i:

dc̃i
dt

+ L (c̃i) = 0,

52

where L is a linear discretization operator which is assumed to satisfy for any
tracer �eld c̃i ∑

i

c̃iL (c̃i) = 0,

Discretizing the time derivative in a trapezoidal manner and using the linearity of
L we get

c̃n+1
i − c̃ni

∆t
= −

L (c̃n+1
i)− L (c̃ni)

2
= −1

2L (c̃n+1
i + c̃ni).

Multiplying by c̃n+1
i + c̃ni , summing, and using the assumption on L applied to

the �eld (c̃n+1
i + c̃ni), we get∑

i

(c̃n+1
i)2 − (c̃ni)

2

∆t
= −1

2(c̃
n+1
i + c̃ni)L (c̃n+1

i + c̃ni) = 0.

This method is unconditionally stable and conserves variance. However, there
maybe problems with accuracy, a need to solve a system of linear equations at
each time step, and to maintain the identity satis�ed by L .

(10) Initial and boundary conditions for the leapfrog method for advec-
tive 1D �ows:

Consider the equation derived earier:

dci
dt

+
qi+ 1

2
− qi− 1

2

∆x
= 0.

Let q̂i− 1
2
be the time average of the advective �ux uc across the cell interface be-

tween cells i−1 and i over the time interval ∆t between tn−1 and tn+1. Integrating
the given equation with respect to t over this interval we get

cn+1
i = cn−1

i − 2
∆t

∆x
(q̂i+ 1

2
− q̂i− 1

2
),

where we have used the estimate

q̂i− 1
2
:=

1

∆t

∫ tn+1

tn−1

uc|i− 1
2
dt =⇒ q̃i− 1

2
= u

(
c̃ni + c̃ni−1

2

)
.

Setting

C :=
u∆t

∆x
,

the so-called Courant number, we then get a discretization method for further
analysis, namely

53

c̃n+1
i = c̃n−1

i − C(c̃ni+1 − c̃ni−1).

Note that unlike other dimensionless numbers, the Courant number will be negative
if u < 0.

First note that since the solution to the original PDE

∂c

∂t
+ u

∂c

∂x
= 0 =⇒ c = c0(x− ut),

along each line a = x−ut in the (x, t) plane, for a given constant a the value of c is
also constant. For t = 0, if a is such that x = a ∈ [x0, xn] then the value of c on the
line is dependent on the initial condition c = c0(x) = c0(a). If however a < x0 then
the value is dependent on the upstream boundary condition c = c0(x0−ut) = c0(a).
These lines are called characteristics.
To compute from

c̃n+1
i = c̃n−1

i − C(c̃ni+1 − c̃ni−1)

which was derived above, two initial conditions are needed, the physical value is c̃0i
Using an explicit Euler step from c̃0i we have

c̃1i = c̃0i −
C

2
(c̃0i − c̃0i−1),

which gives the second arti�cial initial condition.
Mathematically, because of the constancy of solutions along characteristics a bound-
ary condition is required only at the upstream boundary. However, the leapfrog
method requires an downstream boundary condition also. In practice an equation
consistent with the local discretization at i = m, the �nal cell, is used:

c̃n+1
m = c̃nm − C(c̃nm − c̃nm−1).

At the upstream boundary we use the physical condition to get the values of c̃n0 .
The solution is second order in both x and t other than near the initial condition
and the out�ow boundary where the order drops by 1. Given the delicacy of this
situation, stability analysis is advised for this method.

(11) Stability analysis for the leapfrog method for advective 1D �ows:

Let as before using the von Neumann method, substituting a single Fourier mode
in the discretized equation we have derived

c̃n+1
i = c̃n−1

i − C(c̃ni+1 − c̃ni−1),

54

we get

c̃ni = A exp(i(kxi∆x− ωn∆t) =⇒ sin(ω∆t) = C sin(kx∆x).

The latter is called the numerical dispersion relation. It is a constraint giving
a relationship between the wave number and frequency of the mode. For |C| > 1
and the wave with kx∆x = π/2, we get solutions with negative imaginary part for
ω, and thus growing amplitude. The method is therefore unstable in this range.
If 0 < C ≤ 1 we get two real solutions for ω and thus a stable solution. Hence
|C| ≤ 1 is necessary for stability.
The leapfrog method calculates the value of the unknown function c at point in-
dexed i and time indexed n. This value then depends on values at time n− 1 and
points i ± 1. These in tern require values at time n − 2 and points i ± 2. We get
a triangle of required values in the (x, t) plane. On the other hand the value c̃ni is
completely determined by the unique characteristic x − ut = xi − utn. Stability
corresponds to this line lying within the triangle of required values. To see this, at
the margin for �xed ∆x and ∆t, for stability the speed |u| needs to be su�ciently
small so |C| ≤ 1. But 1/|u| is the slope of the characteristic, so the slope must be
su�ciently large, which places the characteristic within the triangle.

(12) Upstream/upwind or donor cell method:

In spite of having some desirable features, the leapfrog method gives poor perfor-
mance when it comes to accuracy. For example the �top-hat" function with value
1 on a subinterval advects poorly. It seems upstream only information should be
used in the numerical method rather than central averaging if we are to model
the physical basis of advection. Using an Euler step based on a single time step
but calculating the average �ow from the grid cell from where the �ow comes from
gives rise to the donor cell method. First we derive the discretization:

c̃n+1
i = c̃ni − ∆t

∆x
(q̂i+ 1

2
− q̂i− 1

2
), where q̂i− 1

2
:=

1

∆t

∫ tn+1

tn
qi− 1

2
dt ≈ uc̃n

i− 1
2

.

With the Courant number C = u∆t
∆x as before, this gives therefore the discrete

equation
c̃n+1
i = c̃ni − C(c̃ni − c̃ni−1).

Using the von Neumann method or considering the triangle of dependence as we
did before we get a necessary condition for stability 0 ≤ C ≤ 1. Note that of
course u ≥ 0 in this situation. Note also that there is no need for arti�cial upwind
boundary or for initial conditions. The necessary condition can also be shown to
be su�cient.

55

However, when tested numerically, surprisingly di�usion seems to be inherent in
the method. Using Taylor expansions and the original equation, the computed
solution satis�es

∂c̃

∂t
+ u

∂c̃

∂x
=
u∆x

2
(1− C)

∂2c̃

∂x2
+O(∆t2,∆x2).

Hence, unless C happens to equal 1, the computed solution is subject to di�usion.
This equation also shows it is only �rst order in x. A better method would be both
second order and reduce the di�usion.

Acknowledgement: Section 6.4, �Introduction to geophysical �uid dynamics:
physical and numerical aspects" 2nd edition, by Benoit Cushman-Roisin and Jean-
Marie Beckers, AP, Elsevier, 2011.

(13) The Lax-Wendro� method:

The aim of reducing numerical di�usion is achieved with this method. It estimates
the �ux at a cell boundary by assuming the �ux q varies linearly over the cell:

q̂i− 1
2
:= u

(
c̃ni + c̃ni−1

2
− C

2
(c̃ni − c̃ni−1)

)
= uc̃nn−1 + (1− C)

u∆x

2

c̃ni − c̃ni−1

∆x

≈ uc̃nn−1 + (1− C)
u∆x

2

∂c̃

∂x
.

Substituting into the �nite volume discretization, namely

c̃n+1
i = c̃ni − ∆t

∆x
(q̂i+ 1

2
− q̂i− 1

2
)

applied to c rather than T with some algebra we get:

c̃n+1
i = c̃ni − C(c̃ni − c̃ni−1)−

∆t

∆x2
(1− C)

u∆x

2
(c̃ni+1 − 2c̃ni + c̃ni−1)

Note that the new second term in the expression for q̂i− 1
2
is aimed at reducing

numerical di�usion. The resulting method is second order but subject to dispersion,
because we have inadvertently introduced an odd order (third) spacial derivative!

(14) The Crank-Nicholson method:
This method is implicit, so requires the solution to a set of linear equations at
each time step. However it is unconditionally stable, but accuracy is low for higher
Courant numbers C. It can be derived using the de�nition

q̂i− 1
2
:= αu

c̃n+1
i + c̃n+1

i−1

2
+ (1− α)u

c̃ni + c̃ni−1

2
with α =

1

2
.

56

Monotonic implies �rst order - the Godunov theorem:

With this tool box of methods the issue arises of whether stability and/or accuracy
might be improved by combining methods. Given the linearity of the original
equation, provided the coe�cients add to 1 methods can be combined. However
the stability is not the sum of the stabilities and needs to be calculated in each case.
The same applies to accuracy. As for monotonicity (the norm of the discretized
solution does not increase in time), we have the result of Godunov (1959), that a
consistent numerical method for the advection equation that is monotonic can be
at most �rst order accurate! Note that only the upwind method can be show to be
monotonic.

(15) 1D Advection and di�usion with a source/sink term

∂c

∂t
+ u

∂c

∂x
= −Sc+ ∂

∂x

(
A
∂c

∂x

)
.

We combine the second order Lax-Wendro� method with zero di�usion with the
second order trapezoidal method for the di�usion term. Let as before C := u∆t/∆x
and set dimensionless B := S∆t. Then we get

c̃n+1
i = c̃ni − B

2
(c̃ni + c̃n+1

i)− C

2
(c̃ni+1 − c̃ni−1) +

C2

2
(c̃ni+1 − 2c̃ni + c̃ni−1.

Using Taylor expansions one can show that this method is only �rst order accurate
unless u = 0 or S = 0, i.e. it degenerates to one or other of the component methods.
There are also problems with stability and monotonicity when methods are com-
bined. This advisory warning (that the stability of the combined method is not
easily derivable from that of the component methods) is given, since the situations
faced can be quite varied, given the variety of methods available and the number
of di�erent term types in the equations. For example, if we combine Lax-Wendro�
(|C| ≤ 1 with the Explicit Euler method (0 ≤ D ≤ 1

2), and the explicit method for
the sink term (S ≤ 2), it can be shown that for stability we must have

S + 2C2 + 4D ≤ 2,

which is more di�cult to satisfy than satisfying each of the individual conditions.
These would give at the margin S + 2C2 + 4D = 2 + 2 + 2 = 6.

Acknowledgement: Section 6.5, �Introduction to geophysical �uid dynamics:
physical and numerical aspects" 2nd edition, by Benoit Cushman-Roisin and Jean-
Marie Beckers, AP, Elsevier, 2011.

57

(16) 2D advective �ows - double 1D discretization:

We consider the equation for c(t, x, y) where c represents the concentration of a
�tracer" such as heat or salt:

∂c

∂t
+ u

∂c

∂x
+ v

∂c

∂y
= 0, with u, v constant.

If c0(x, y) is the initial condition then c0(x− ut, y − vt) is the analytic solution.
Using a combination of two 1D methods is unsatisfactory since these take infor-
mation from nodal points on lines parallel to the axes whereas the �ow needs
information along the direction (u, v). There are methods which re�ect this, for
example the so called Corner Transport upstream method. To describe this
method we need two Courant numbers:

Cx :=
u∆t

∆x
, Cy :=

u∆t

∆x
.

Using the �nite volume approach we next de�ne

q̂x,i− 1
2
,j := (1− Cy/2)ũc

n
i−1,j + (Cy/2)ũc

n
i−1,j−1, and

q̂y,i,j− 1
2
:= (1− Cx/2)ṽc

n
i,j−1 + (Cx/2)ṽc

n
i−1,j−1, leading to

c̃n+1
i,j c̃ni,j − Cx(c̃

n
i,j − c̃ni−1,j)− Cy(c̃

n
i,j − c̃ni,j−1)

+ CxCy(c̃
n
i,j − c̃ni−1,j − c̃ni,j−1 + c̃ni−1,j−1

= (1− Cx)(1− Cy)c̃
n
i,j + (1− Cy)Cxc̃

n
i−1,j

+ (1− Cx)Cy c̃
n
i,j−1 + CxCy c̃

n
i−1,j−1.

I can be seen (provided the Courant numbers are not greater than 1 so none of
the coe�cients are negative) that the method is monotonic. This method has less
distortion but still dampens excessively because of numerical di�usion

Acknowledgement: Section 6.6, �Introduction to geophysical �uid dynamics:
physical and numerical aspects" 2nd edition, by Benoit Cushman-Roisin and Jean-
Marie Beckers, AP, Elsevier, 2011.

(17) Operator splitting methods for 2D advection - Strang splitting:

These methods similar to predictor/corrector and provide easy ways of building on
1D methods. For example let a discretization be written in the form

dc̃i
dt

+ L1(c̃i) + L2(c̃i) = 0

58

Splitting over time gives an equivalent set of two equations with intermediate values
c̃∗i :

c̃∗i − c̃ni
∆t

+ L1(c̃
n
i) = 0,

c̃n+1
i − c̃∗i
∆t

+ L2(c̃
∗
i) = 0.

The ordering, x �rst and then y, for the splitting is unsatisfactory since it introduces
a bias into the method. A simple way of obviating this problem is to �rst split
in the x direction and then y and then, for the next time step do the reverse by
switching the order of the operators:

c̃∗i − c̃ni
∆t

+ L2(c̃
n+1
i) = 0,

c̃n+2
i − c̃∗i
∆t

+ L1(c̃
∗
i) = 0.

For simple examples the method has little di�usion, but some distortion. For more
complicated �ows, such as those exhibiting shear, the results can be disappointing.

59

(18) The discrete Poisson equation

This section is a brief summary of well known methods for solving the discrete 2D
Poisson equation:

ψ̃i+1,j − 2ψ̃i,j + ψ̃i−1,j

∆x2
+
ψ̃i,j+1 − 2ψ̃i,j + ψ̃i,j−1

∆y2
= q̃i,j .

The extension of the methods to 3D is straight forward. It is not the intention of
these notes to provide a guide to implementations since these are already extensive
in libraries of subroutines, especially those derived from LAPACK and the BLAS.
In addition, there are libraries which are optimized for particular architectures,
such as GPU, parallel or vector machines. The intention is merely to give an
overview of some methods and issues. Later we will describe the Julia package
CuArrays.jl, optimized for NVIDIA sourced GPUs.

(18.1) Jacobi method with over relaxation

This is the simplest, and most ine�cient, iterative scheme and requires O(M)
iterations to obtain a reasonable residual, the di�erence between the left and right

hand sides. We must assign starting values ψ̃
(0)
i,j for the unknowns at each grid point

(xi, yj) with k = 0 and loop on k → k + 1 until the residual max ϵi,j is smaller
than a preassigned value. The so-called relaxation parameter ω is a positive
real number, and for stability it turns out we must have 0 < ω < 2. Checking
for boundary values must be built into the algorithm at every step. Note that we
should compute the lines of implemented code in the given order so as not to need
store all the residuals.

(
2

∆x2
+

2

∆y2

)
ϵ
(k)
i,j =

ψ̃
(k)
i+1,j − 2ψ̃

(k)
i,j + ψ̃

(k)
i−1,j

∆x2
+
ψ̃
(k)
i,j+1 − 2ψ̃

(k)
i,j + ψ̃

(k)
i,j−1

∆y2
− q̃i,j

ψ̃
(k+1)
i,j = ψ̃

(k)
i,j + ωϵ

(k)
i,j

(18.2) Gauss-Sidel method with successive over-relaxation (SOR)

If we arrange the algorithm in the Jacobi method to loop across the domain with
increasing i, j, computing each line successively at each k value step in the given
order, then we could use the updated neighbourhood values of the unknowns im-
mediately. This ensures more rapid convergence, indeed from O(M) to O(

√
M),

but the optimal value of ω depends on the shape of the boundary, making a generic
algorithm impossible to supply in a library version of SOR.

ψ̃
(k+1)
i,j = ψ̃

(k)
i,j + ωϵ

(k)
i,j

60

(
2

∆x2
+

2

∆y2

)
ϵ
(k)
i,j =

ψ̃
(k)
i+1,j − 2ψ̃

(k)
i,j + ψ̃

(k+1)
i−1,j

∆x2
+
ψ̃
(k)
i,j+1 − 2ψ̃

(k)
i,j + ψ̃

(k+1)
i,j−1

∆y2
− q̃i,j

ψ̃
(k+1)
i,j = ψ̃

(k)
i,j + ωϵ

(k)
i,j

(18.3) Red-black methods

Linear algebra routines are ideally suited for parallel or vector processing since
the same operations are performed on many variables. SOR is not well adapted
for parallel processing. So-called red-black methods overcome this feature by
dividing the domain (if its 2D) into two sets of interlaced nodes, called red nodes
and black nodes. SOR is then applied at step k to each set independently (in
parallel) using the neighbouring values of the unknowns from the previous step with
the alternative colour. Thus we have two Jacobi iterations performed independently
and in parallel on two interlaced grids. This results in a signi�cant speedup on
suitable hardware.

(18.4) The Steepest descent method

Noting that the left hand side of the discretized Poisson equation is symmetric
and positive de�nite when written in the matrix form Ax = b, leads to writing
the inversion problem as a minimization problem. De�ne a real number J and its
gradient ∇xJ by

J = 1
2x

′Ax− x′b,

∇xJ = Ax− b,

where x′ represents the transpose of the column vector x.
The problem Ax = b can be solved for x by �nding the unique minimum of J ,
which occurs when the gradient vanishes. Typically, x is a long vector with one
dimension for every node in the domain, and �nding the exact minimum is expen-
sive and unnecessary. At step k, if r is the kth residual, let x(k+1) = x(k) − αr,
where α is a real number chosen to minimize the k + 1th residual. Indeed, it can
be shown that α = r′r/r′Ar. Then pseudo-code for the steepest descent algorithm
takes the form:

Initialize:

x(0) = x0

loop on k from k = 0 until the residual r is su�ciently small

61

r = Ax(k) − b

α =
r′r

r′Ar

x(k+1) = x(k) − αr

end of kth loop

However, convergence of the steepest descent algorithm is slow, giving rise to the
following so-called conjugate gradient method.

(18.5) Conjugate-gradient method

This is a generalization of the steepest descent method. Instead of minimizing over
one real number we consider vectors x with the shape

x = x0 − α1e1 − · · · − αMeM ,

where the vectors ej are chosen to satisfy e′iAej = 0, i ̸= j. With this choice
With an initial value of k = 0

Initialize:

x(0) = x0, r0 = Ax0 − b, e1 = r0, s0 = ∥r0∥2

Then loop on k from k = 0 until the residual r is su�ciently small

αk =
e′krk−1

e′kAek

x(k) = x(k−1) − αkek

rk = rk−1 − αkAek

sk = ∥rk∥2

ek+1 = rk +
sk
sk−1

ek

end of the kth loop

Convergence is normally obtained with this algorithm with O(M3/2 iterations.
(18.6) multigrid methods

This approach can give the most e�cient Poisson equation solvers. They begin with
a coarse grid and �nd a solution which gives a rough idea of what is happening
with the given equations. This is then interpolated across a �ner grid to get a
new initial x(0), which is improved with several iterations and so on. Clearly, some
experimentation is needed to determine a good rate at which the grid should be
re�ned and the number of steps used for each grid. Apparently, it's possible to get
convergence in O(M) steps.

62

Acknowledgement: Section 7.8, �Introduction to geophysical �uid dynamics:
physical and numerical aspects" 2nd edition, by Benoit Cushman-Roisin and Jean-
Marie Beckers, AP, Elsevier, 2011.

63

(19) Jacobian evaluations

In two dimensions for invicid and non-turbulent �ow we can write the equation for
quasi-geostrophic �ow as

∂q

∂t
+ J(ψ, q) = 0 where q = ∇2ψ + β0y,

and where ψ(x, y, t) is called the pressure stream function and q(x, y, t) the poten-
tial vorticity.
We can rewrite the Jacobian determinant in three distinct ways, the �rst being the
normal de�nition:

J(ψ, q) =
∂ψ

∂x

∂q

∂y
− ∂ψ

∂y

∂q

∂x
(a),

=
∂

∂x

(
ψ
∂q

∂y

)
− ∂

∂y

(
ψ
∂q

∂x

)
(b),

=
∂

∂y

(
q
∂ψ

∂x

)
− ∂

∂x

(
q
∂ψ

∂y

)
(c).

Using a uniform rectilinear grid and introducing the notation

ψ̃0 = ψ̃(xi, yj , t),

ψ̃1 = ψ̃(xi−1, yj−1, t),

ψ̃2 = ψ̃(xi, yj−1, t),

ψ̃3 = ψ̃(xi+1, yj−1, t),

ψ̃4 = ψ̃(xi+1, yj , t),

ψ̃5 = ψ̃(xi+1, yj+1, t),

ψ̃6 = ψ̃(xi, yj+1, t),

ψ̃7 = ψ̃(xi−1, yj+1, t),

ψ̃8 = ψ̃(xi−1, yj , t),

we can write second order approximations to the three forms of the Jacobian de-
terminant:

Ja =
(ψ̃4 − ψ̃8)(q̃6 − q̃2)− (ψ̃6 − ψ̃2)(q̃4 − q̃8)

4∆x∆y
,

Jb =

(
ψ̃4(q̃5 − q̃3)− ψ̃8(q̃7 − q̃ − 1)

)
−
(
ψ̃6(q̃5 − q̃7)− ψ̃2(q̃3 − q̃ − 1)

)
4∆x∆y

,

64

Jc =

(
q̃6(ψ̃5 − ψ̃7)− q̃2(ψ̃3 − ψ̃1)

)
−
(
q̃4(ψ̃5 − ψ̃3)− q̃8(ψ̃7 − ψ̃1)

)
4∆x∆y

.

To exploit these di�erent forms Arakawa derived a linear combination which (thus)
had this second order truncation error, but also satis�ed numerically some nice anti-
symmetry and conservation laws provided ψ was uniform along boundaries of the
2D domain S or had periodic boundaries, namely

J(ψ, q) = −J(q, ψ),∫
S
J(ψ, q) dS = 0,∫

S
qJ(ψ, q) dS = 0,∫

S
ψJ(ψ, q) dS = 0.

Arakawa's jacobian has the form

J :=
Ja + Jb + Jc

3
.

(19.2) Cross derivatives 2D second order approximation

∣∣∣∣. ∂2u∂x∂y

∣∣∣∣
i,j

≈ ui+1,j+1 − ui+1,j−1 + ui−1,j−1 − ui−1,j+1

4∆x∆y
+O(∆x2 +∆y2).

Acknowledgement: Chapter 16 Section 16.7, Appendix C.4, �Introduction to
geophysical �uid dynamics: physical and numerical aspects" 2nd edition, by Benoit
Cushman-Roisin and Jean-Marie Beckers, AP, Elsevier, 2011.

65

